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Abstract

In this article we provide a review of the literature with respect to

the e�cient markets hypothesis and chaos. In doing so, we contrast

the martingale behavior of asset prices to nonlinear chaotic dynamics,

discuss some recent techniques used in distinguishing between prob-

abilistic and deterministic behavior in asset prices, and report some

evidence. Moreover, we look at the controversies that have arisen

about the available tests and results, and raise the issue of whether

dynamical systems theory is practical in �nance.
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1 Introduction

Recently the e�cient markets hypothesis and the notions connected with

it have provided the basis for a great deal of research in �nancial economics.

A voluminous literature has developed supporting this hypothesis. Briey

stated, the hypothesis claims that asset prices are rationally related to eco-

nomic realities and always incorporate all the information available to the

market. This implies the absence of exploitable excess pro�t opportunities.

However, despite the widespread allegiance to the notion of market e�ciency,

a number of studies have suggested that certain asset prices are not rationally

related to economic realities. For example, Summers (1986) argues that mar-

ket valuations di�er substantially and persistently from rational valuations

and that existing evidence (based on common techniques) does not establish

that �nancial markets are e�cient.

Although most of the empirical tests of the e�cient markets hypothesis

are based on linear models, interest in nonlinear chaotic processes has in the

recent past experienced a tremendous rate of development. There are many

reasons for this interest, one of which being the ability of such processes to

generate output that mimics the output of stochastic systems, thereby of-

fering an alternative explanation for the behavior of asset prices. In fact,

the possible existence of chaos could be exploitable and even invaluable. If,

for example, chaos can be shown to exist in asset prices, the implication

would be that pro�table, nonlinearity-based trading rules exist (at least in

the short run and provided the actual generating mechanism is known). Pre-

diction, however, over long periods is all but impossible, due to the sensitive

dependence on initial conditions property of chaos.

In this paper, we survey the recent literature with respect to the e�cient

markets hypothesis and chaos. In doing so, in the next two sections we briey

discuss the e�cient markets hypothesis and some of the more recent testing

methodologies. In section 4, we provide a description of the key features of

the available tests for independence, nonlinearity, and chaos, focusing explicit

attention on each test's ability to detect chaos. In section 5, we present a

discussion of the empirical evidence on macroeconomic and (mostly) �nancial

data, and in section 6, we look at the controversies that have arisen about the

available tests and address some important questions regarding the power of

some of these tests. The �nal section concludes.

2



2 The Martingale Hypothesis

Standard asset pricing models typically imply the `martingale model',

according to which tomorrow's price is expected to be the same as today's

price. Symbolically, a stochastic process xt follows a martingale if

Et(xt+1j
t) = xt (1)

where 
t is the time t information set - assumed to include xt. Equation (1)

says that if xt follows a martingale the best forecast of xt+1 that could be

constructed based on current information 
t would just equal xt.

Alternatively, the martingale model implies that (xt+1�xt) is a `fair game'
(a game which is neither in your favor nor your opponent's)1

Et[(xt+1 � xt)j
t] = 0: (2)

Clearly, xt is a martingale if and only if (xt+1�xt) is a fair game. It is for this
reason that fair games are sometimes called `martingale di�erences'.2 The

fair game model (2) says that increments in value (changes in price adjusted

for dividends) are unpredictable, conditional on the information set 
t. In

this sense, information 
t is fully reected in prices and hence useless in

predicting rates of return. The hypothesis that prices fully reect available

information has come to be known as the `e�cient markets hypothesis'.

In fact Fama (1970) de�ned three types of (informational) capital market

e�ciency (not to be confused with allocational or Pareto-e�ciency), each of

which is based on a di�erent notion of exactly what type of information is

understood to be relevant. In particular, markets are weak-form, semistrong-

form, and strong-form e�cient if the information set includes past prices and

returns alone, all public information, and any information public as well

as private, respectively. Clearly, strong-form e�ciency implies semistrong-

form e�ciency, which in turn implies weak-form e�ciency, but the reverse

implications do not follow, since a market easily could be weak-form e�cient

1A stochastic process zt is a fair game if zt has the property Et(zt+1j
t) = 0:
2The martingale process is a special case of the more general submartingale process.

In particular, xt is a `submartingale' if it has the property Et(xt+1j
t) � xt: In terms
of the (xt+1 � xt) process, the submartingale model implies that Et[(xt+1 � xt)j
t] � 0
and embodies the concept of a superfair game. LeRoy (1989, pp. 1593-4) also o�ers an
example in which Et[(xt+1 � xt)j
t] � 0, in which case xt will be a `supermartingale',
embodying the concept of a subfair game.
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but not semistrong-form e�cient or semistrong-form e�cient but not strong-

form e�cient.

The martingale model given by (1) can be written equivalently as

xt+1 = xt + "t

where "t is the martingale di�erence. When written in this form the mar-

tingale looks identical to the `random walk model' - the forerunner of the

theory of e�cient capital markets. The martingale, however, is less restric-

tive than the random walk. In particular, the martingale di�erence requires

only independence of the conditional expectation of price changes from the

available information, as risk neutrality implies, whereas the (more restric-

tive) random walk model requires this and also independence involving the

higher conditional moments (i.e., variance, skewness, and kurtosis) of the

probability distribution of price changes.

In fact, Campbell, Lo, and MacKinlay (1997) distinguish between three

versions of the random walk hypothesis | the `independently-and-identically-

distributed-returns' version, the `independent-returns' version, and the ver-

sion of `uncorrelated-returns' | see Campbell, Lo, and MacKinlay (1997)

for more details. The martingale di�erence model, by not requiring proba-

bilistic independence between successive price changes, is entirely consistent

with the fact that price changes, although uncorrelated, tend not to be in-

dependent over time but to have clusters of volatility and tranquility (i.e.,

dependence in the higher conditional moments) - a phenomenon originally

noted for stock market prices by Mandelbrot (1963) and Fama (1965).

3 Tests of the Martingale Hypothesis

The random walk and martingale hypotheses imply a unit root in the

level of the price or logarithm of the price series - notice that a unit root is

a necessary but not su�cient condition for the random walk and martingale

models to hold. Hence, these models can be tested using recent advances in

the theory of integrated regressors. The literature on unit root testing is vast

and, in what follows, we shall only briey illustrate some of the issues that

have arisen in the broader search for unit roots in �nancial asset prices.3

3It is to be noted that unit root tests have low power against relevent alternatives.
Also, as Granger (1995) points out, nonlinear modelling of nonstationary variables is a
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Nelson and Plosser (1982), using the augmented Dickey-Fuller (ADF) unit

root testing procedure [see Dickey and Fuller (1981)] test the null hypothe-

sis of `di�erence-stationarity' against the `trend-stationarity' alternative. In

particular, in the context of �nancial asset prices, one would estimate the

following regression

�yt = �0 + �1yt�1 +

`X

j=1

cj�yt�j + "t

where y denotes the logarithm of the series. The null hypothesis of a single

unit root is rejected if �1 is negative and signi�cantly di�erent from zero.

A trend variable should not be included, since the presence of a trend in

�nancial asset prices is a clear violation of market e�ciency, whether or not

the asset price has a unit root. The optimal lag length, `, can be chosen us-

ing data-dependent methods, that have desirable statistical properties when

applied to unit root tests. Based on such ADF unit root tests, Nelson and

Plosser (1982) argue that most macroeconomic and �nancial time series have

a unit root.

Perron (1989), however, argues that most time series [and in particular

those used by Nelson and Plosser (1982)] are trend stationary if one allows

for a one-time change in the intercept or in the slope (or both) of the trend

function. The postulate is that certain `big shocks' do not represent a re-

alization of the underlying data generation mechanism of the series under

consideration and that the null should be tested against the trend-stationary

alternative by allowing, under both the null and the alternative hypotheses,

for the presence of a one-time break (at a known point in time) in the in-

tercept or in the slope (or both) of the trend function.4 Hence, whether the

unit root model is rejected or not depends on how big shocks are treated. If

they are treated like any other shock, then ADF unit root testing procedures

new, complicated, and largely undeveloped area. We therefore ignore this issue in this
paper, keeping in mind that this is an area for future research.

4Perron's (1989) assumption that the break point is uncorrelated with the data has been
criticized, on the basis that problems associated with `pre-testing' are applicable to his
methodology and that the structural break should instead be treated as being correlated
with the data. More recently, a number of studies treat the selection of the break point
as the outcome of an estimation procedure and transform Perron's (1989) conditional (on
structural change at a known point in time) unit root test into an unconditional unit root
test.
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are appropriate and the unit root null hypothesis cannot (in general) be re-

jected. If, however, they are treated di�erently, then Perron-type procedures

are appropriate and the null hypothesis of a unit root will most likely be

rejected.

Finally, given that integration tests are sensitive to the class of models

considered (and may be misleading because of misspeci�cation), `fractionally'-

integrated representations, which nest the unit-root phenomenon in a more

general model, have also been used - see Baillie (1996) for a survey. Frac-

tional integration is a popular way to parameterize long-memory processes.

If such processes are estimated with the usual autoregressive-moving average

model, without considering fractional orders of integration, the estimated

autoregressive process can exhibit spuriously high persistence close to a unit

root. Since �nancial asset prices might depart from their means with long

memory, one could condition the unit root tests on the alternative of a frac-

tional integrated process, rather than the usual alternative of the series being

stationary. In this case, if we fail to reject an autoregressive unit root, we

know it is not a spurious �nding due to neglect of the relevant alternative of

fractional integration and long memory.

Despite the fact that the random walk and martingale hypotheses are con-

tained in the null hypothesis of a unit root, unit root tests are not predictabil-

ity tests. They are designed to reveal whether a series is di�erence-stationary

or trend stationary and as such they are tests of the permanent/temporary

nature of shocks. More recently a series of papers including those by Poterba

and Summers (1988), and Lo and MacKinlay (1988) have argued that the

e�cient markets theory can be tested by comparing the relative variability

of returns over di�erent horizons using the variance ratio methodology of

Cochrane (1988). They have shown that asset prices are mean reverting over

long investment horizons - that is, a given price change tends to be reversed

over the next several years by a predictable change in the opposite direc-

tion. Similar results have been obtained by Fama and French (1988), using

an alternative but closely related test based on predictability of multiperiod

returns. Of course, mean-reverting behavior in asset prices is consistent with

transitory deviations from equilibrium which are both large and persistent,

and implies positive autocorrelation in returns over short horizons and neg-

ative autocorrelation over longer horizons.

Predictability of �nancial asset returns is a broad and very active re-

search topic and a complete survey of the vast literature is beyond the scope
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of the present paper. We shall notice, however, that a general consensus has

emerged that asset returns are predictable. As Campbell, Lo, and MacKinlay

(1997, pp. 80) put it \[r]ecent econometric advances and empirical evidence

seem to suggest that �nancial asset returns are predictable to some degree.

Thirty years ago this would have been tantamount to an outright rejection

of market e�ciency. However, modern �nancial economics teaches us that

other, perfectly rational, factors may account for such predictability. The

�ne structure of securities markets and frictions in the trading process can

generate predictability. Time-varying expected returns due to changing busi-

ness conditions can generate predictability. A certain degree of predictability

may be necessary to reward investors for bearing certain dynamic risks".

4 Tests of Nonlinearity and Chaos

Most of the empirical tests that we discussed so far are designed to de-

tect `linear' structure in �nancial data - that is, linear predictability is the

focus. However, as Campbell, Lo, and MacKinlay (1997, pp. 467) argue \ ...

many aspects of economic behavior may not be linear. Experimental evidence

and casual introspection suggest that investors' attitudes towards risk and

expected return are nonlinear. The terms of many �nancial contracts such

as options and other derivative securities are nonlinear. And the strategic

interactions among market participants, the process by which information is

incorporated into security prices, and the dynamics of economy-wide uctu-

ations are all inherently nonlinear. Therefore, a natural frontier for �nancial

econometrics is the modeling of nonlinear phenomena".

It is for such reasons that interest in deterministic nonlinear chaotic pro-

cesses has in the recent past experienced a tremendous rate of development.

Besides its obvious intellectual appeal, chaos is interesting because of its abil-

ity to generate output that mimics the output of stochastic systems, thereby

o�ering an alternative explanation for the behavior of asset prices. Clearly

then, an important area for potentially productive research is to test for

chaos and (in the event that it exists) to identify the nonlinear determinis-

tic system that generates it. In what follows, we turn to several univariate

statistical tests for independence, nonlinearity and chaos, that have been re-

cently motivated by the mathematics of deterministic nonlinear dynamical

systems.
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4.1 The Correlation Dimension Test

Grassberger and Procaccia (1983) suggested the `correlation dimension'

test for chaos. To briey discuss this test, let us start with the 1-dimensional

series, fxtgnt=1, which can be embedded into a series ofm-dimensional vectors

Xt = (xt; xt�1; :::; xt�m+1)
0 giving the series fXtgnt=m. The selected value ofm

is called the `embedding dimension' and each Xt is known as an `m-history'

of the series fxtgnt=1. This converts the series of scalars into a slightly shorter
series of (m-dimensional) vectors with overlapping entries - in particular,

from the sample size n; N = n�m+ 1 m-histories can be made. Assuming

that the true, but unknown, system which generated fxtgnt=1 is #-dimensional
and provided that m � 2#+1, then the N m-histories recreate the dynamics

of the data generation process and can be used to analyze the dynamics of

the system | see Takens (1981).

The correlation dimension test is based on the `correlation function' (or

`correlation integral'), C(N;m; �), which for a given embedding dimension m

is given by:

C(N;m; �) =
1

N(N � 1)

X

m�t6=s�n

H (�� kXt �Xsk)

where � is a su�ciently small number, H(z) is the Heavside function (which

maps positive arguments into 1 and nonpositive arguments into 0), and k:k
denotes the distance induced by the selected norm (the `maximum norm'

being the type used most often). In other words, the correlation integral is

the number of pairs (t; s) such that each corresponding component of Xt and

Xs are near to each other, nearness being measured in terms of distance being

less than �. Intuitively, C(N;m; �) measures the probability that the distance

between any twom-histories is less than �. If C(N;m; �) is large (which means

close to 1) for a very small ", then the data is very well correlated.

The correlation dimension can be de�ned as

Dm
c = lim

�!0

logC(N;m; �)

log �
;

that is by the slope of the regression of logC(N;m; �) versus log � for small

values of �, and depends on the embedding dimension, m. As a practical

matter one investigates the estimated value of Dm
c as m is increased. If as
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m increases Dm
c continues to rise, then the system is stochastic. If, however,

the data are generated by a deterministic process (consistent with chaotic

behavior), then Dm
c reaches a �nite saturation limit beyond some relatively

smallm:5 The correlation dimension can therefore be used to distinguish true

stochastic processes from deterministic chaos (which may be low-dimensional

or high-dimensional).

While the correlation dimension measure is therefore potentially very use-

ful in testing for chaos, the sampling properties of the correlation dimension

are, however, unknown. As Barnett, Gallant, Hinich, Jungeilges, Kaplan,

and Jensen (1995, pp. 306) put it \[i]f the only source of stochasticity is

[observational] noise in the data, and if that noise is slight, then it is pos-

sible to �lter the noise out of the data and use the correlation dimension

test deterministically. However, if the economic structure that generated the

data contains a stochastic disturbance within its equations, the correlation

dimension is stochastic and its derived distribution is important in producing

reliable inference".

Moreover, if the correlation dimension is very large as in the case of high-

dimensional chaos, it will be very di�cult to estimate it without an enormous

amount of data. In this regard, Ruelle (1990) argues that a chaotic series can

only be distinguished if it has a correlation dimension well below 2 log10N ,

where N is the size of the data set, suggesting that with economic time series

the correlation dimension can only distinguish low-dimensional chaos from

high-dimensional stochastic processes - see also Grassberger and Procaccia

(1983) for more details.

4.2 The BDS Test

To deal with the problems of using the correlation dimension test, Brock,

Dechert, LeBaron, and Scheinkman (1996) devised a new statistical test

which is known as the BDS test | see also Brock, Hsieh, and LeBaron

5Since the correlation dimension can be used to characterize both chaos and stochastic
dynamics (i.e., the correlation dimension is a �nite number in the case of chaos and equal
to in�nity in the case of an independent and identically distributed stochastic process),
one often �nds in the literature expressions like `deterministic chaos' (meaning simply
chaos) and `stochastic chaos' (meaning standard stochastic dynamics). This terminology,
however, is confusing in contexts other than that of the correlation dimension analysis and
we shall not use it here.
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(1991). The BDS tests the null hypothesis of whiteness (independent and

identically distributed observations) against an unspeci�ed alternative using

a nonparametric technique.

The BDS test is based on the Grassberger and Procaccia (1983) correla-

tion integral as the test statistic. In particular, under the null hypothesis of

whiteness, the BDS statistic is

W (N;m; �) =
p
N
C(N;m; �)� C(N; 1; �)m

b�(N;m; �)

where b�(N;m; �) is an estimate of the asymptotic standard deviation of

C(N;m; �)� C(N; 1; �)m - the formula for b�(N;m; �) can be found in Brock

et al. (1996). The BDS statistic is asymptotically standard normal under

the whiteness null hypothesis - see Brock et al. (1996) for details.

The intuition behind the BDS statistic is as follows. C(N;m; �) is an

estimate of the probability that the distance between any two m-histories,

Xt and Xs of the series fxtg is less than �. If fxtg were independent then for

t 6= s the probability of this joint event equals the product of the individual

probabilities. Moreover, if fxtg were also identically distributed then all of

the m probabilities under the product sign are the same. The BDS statistic

therefore tests the null hypothesis that C(N;m; �) = C(N; 1; �)m - the null

hypothesis of whiteness.6

Since the asymptotic distribution of the BDS test statistic is known under

the null hypothesis of whiteness, the BDS test provides a direct (formal)

statistical test for whiteness against general dependence, which includes both

nonwhite linear and nonwhite nonlinear dependence. Hence, the BDS test

does not provide a direct test for nonlinearity or for chaos, since the sampling

distribution of the test statistic is not known (either in �nite samples or

asymptotically) under the null hypothesis of nonlinearity, linearity, or chaos.

It is, however, possible to use the BDS test to produce indirect evidence

about nonlinear dependence [whether chaotic (i.e., nonlinear deterministic)

or stochastic], which is necessary but not su�cient for chaos - see Barnett et

al. (1997) and Barnett and Hinich (1992) for a discussion of these issues.

6Note that whiteness implies that C(N;m; �) = C(N; 1; �)m but the converse is not
true.
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4.3 The Hinich Bispectrum Test

The bispectrum in the frequency domain is easier to interpret than the

multiplicity of third order moments fCxxx(r; s) : s � r; r = 0; 1; 2; :::g in the

time domain - see Hinich (1982). For frequencies !1 and !2 in the principal

domain given by


 = f(!1; !2) : 0 < !1 < 0:5; !2 < !1; 2!1 + !2 < 1g ;

the bispectrum, Bxxx(!1; !2), is de�ned by

Bxxx(!1; !2) =

1X

r=�1

1X

s=�1

Cxxx(r; s) exp [�i2�(!1r + !2s)] :

The bispectrum is the double Fourier transformation of the third order mo-

ments function and is the third order polyspectrum. The regular power

spectrum is the second order polyspectrum and is a function of only one

frequency.

The skewness function �(!1; !2) is de�ned in terms of the bispectrum as

follows

�2(!1; !2) =
jBxxx(!1; !2)j2

Sxx(!1)Sxx(!2)Sxx(!1 + !2)
; (3)

where Sxx(!) is the (ordinary power) spectrum of x(t) at frequency !. Since

the bispectrum is complex valued, the absolute value (vertical lines) in Equa-

tion (3) designates modulus. Brillinger (1965) proves that the skewness func-

tion �(!1; !2) is constant over all frequencies (!1; !2) 2 
 if fx(t)g is linear;
while �(!1; !2) is at at zero over all frequencies if fx(t)g is Gaussian. Lin-
earity and Gaussianity can be tested using a sample estimator of the skewness

function. But observe that those atness conditions are necessary but not

su�cient for general linearity and Gaussianity, respectively. On the other

hand, atness of the skewness function is necessary and su�cient for third

order nonlinear dependence. The Hinich (1982) `linearity test' tests the null

hypothesis that the skewness function is at, and hence is a test of lack of

third order nonlinear dependence. For details of the test, see Hinich (1982).
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4.4 The NEGM Test

As it was argued earlier, the distinctive feature of chaotic systems is

sensitive dependence on initial conditions - that is, exponential divergence

of trajectories with similar initial conditions. The most important tool for

diagnosing the presence of sensitive dependence on initial conditions (and

thereby of chaoticity) is provided by the dominant Lyapunov exponent, �.

This exponent measures average exponential divergence or convergence be-

tween trajectories that di�er only in having an `in�nitesimally small' di�er-

ence in their initial conditions and remains well-de�ned for noisy systems.

A bounded system with a positive Lyapunov exponent is one operational

de�nition of chaotic behavior.

One early method for calculating the dominant Lyapunov exponent is

that proposed by Wolf, Swift, Swinney, and Vastano (1985). This method,

however, requires long data series and is sensitive to dynamic noise, so in-

ated estimates of the dominant Lyapunov exponent are obtained. Recently,

Nychka, Ellner, Gallant, and McCa�rey (1992) have proposed a regression

method, involving the use of neural network models, to test for positivity

of the dominant Lyapunov exponent. The Nychka et al. (1992), hereafter

NEGM, Lyapunov exponent estimator is a regression (or Jacobian) method,

unlike the Wolf et al. (1985) direct method which [as Brock and Sayers (1988)

have found] requires long data series and is sensitive to dynamic noise.

Assume that the data fxtg are real-valued and are generated by a non-

linear autoregressive model of the form

xt = f(xt�L; xt�2L; :::; xt�mL) + et (4)

for 1 � t � N , where L is the time-delay parameter and m is the length

of the autoregression. Here f is a smooth unknown function, and fetg is

a sequence of independent random variables with zero mean and unknown

constant variance. The Nychka et al. (1992) approach to estimation of the

maximum Lyapunov exponent involves producing a state-space representa-

tion of (4)

Xt = F (Xt�L) + Et; F : Rm ! R
m

where Xt = (xt; xt�L; :::; xt�mL+L)
0, F (Xt�L) = (f(xt�L; :::; xt�mL); xt�L; :::;

xt�mL+L)
0, and Et = (et; 0; :::; 0)

0, and using a Jacobian-based method to es-
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timate � through the intermediate step of estimating the individual Jacobian

matrices

Jt =
@F (Xt)

@X 0
:

After using several nonparametric methods, McCa�rey et al. (1992) rec-

ommend using either thin plate splines or neural nets to estimate Jt: Esti-

mation based on neural nets involves the use of the a neural net with q units

in the hidden layer

f(Xt�L; �) = �0 +

qX

j=1

�j (0j +

mX

i=1

ijxt�iL)

where  is a known (hidden) nonlinear `activation function' [usually the

logistic distribution function  (u) = 1=(1+exp(�u))]. The parameter vector
� is then �t to the data by nonlinear least squares. That is, one computes the

estimate b� to minimize the sum of squares S(�) =
PN

t=1 [xt � f(Xt�1; �)]
2
,

and uses bF (Xt) = (f(xt�L; :::; xt�mL; b�); xt�L; :::; xt�mL+L)
0 to approximate

F (Xt).

As appropriate values of L;m; and q, are unknown, Nychka et al. (1992)

recommend selecting that value of the triple (L;m; q) that minimizes the

Bayesian Information Criterion (BIC) - see Schwartz (1978). As shown by

Gallant and White (1992), we can use bJt = @ bF (Xt)=@X
0 as a nonparametric

estimator of Jt when (L;m; q) are selected to minimize BIC. The estimate of

the dominant Lyapunov exponent then is

b� =
1

2N
log jbv1(N)j

where bv1(N) is the largest eigenvalue of the matrix bT 0N bTN and where bTN =
bJN bJN�1; :::; bJ1.

Another very promising approach to the estimation of Lyapunov expo-

nents [that is similar in some respects to the Nychka et al. (1992) approach]

has also been recently proposed by Gencay and Dechert (1992). This in-

volves estimating all Lyapunov exponents of an unknown dynamical system.

The estimation is carried out, as in Nychka et al. (1992), by a multivariate

feedforward network estimation technique | see Gencay and Dechert (1992)

for more details.
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4.5 The White Test

In White's (1989) test, the time series is �tted by a single hidden-layer

feed-forward neural network, which is used to determine whether any nonlin-

ear structure remains in the residuals of an autoregressive (AR) process �tted

to the same time series. The null hypothesis for the test is `linearity in the

mean' relative to an information set. A process that is linear in the mean has

a conditional mean function that is a linear function of the elements of the

information set, which usually contains lagged observations on the process.7

The rationale for White's test can be summarized as follows: under the

null hypothesis of linearity in the mean, the residuals obtained by applying

a linear �lter to the process should not be correlated with any measurable

function of the history of the process. White's test uses a �tted neural

net to produce the measurable function of the process's history and an AR

process as the linear �lter. White's method then tests the hypothesis that

the �tted function does not correlate with the residuals of the AR process.

The resulting test statistic has an asymptotic �2 distribution under the null

of linearity in the mean.8

4.6 The Kaplan Test

Kaplan (1994) used the fact that solution paths in phase space reveal

deterministic structure that is not evident in a plot of xt versus t, to produce

a test statistic which has a strictly positive lower bound for a stochastic

process, but not for a deterministic solution path. By computing the test

statistic from an adequately large number of linear processes that plausibly

might have produced the data, the approach can be used to test for linearity

against the alternative of noisy nonlinear dynamics. The procedure involves

producing linear stochastic process surrogates for the data and determining

whether the surrogates or a noisy continuous nonlinear dynamical solution

path better describe the data. Linearity is rejected, if the value of the test

7For a formal de�nition of linearity in the mean, see Lee, White, and Granger (1993,
section 1). Note that a process that is not linear in the mean is said to exhibit `neglected
nonlinearity'. Also, a process that is linear is also linear in the mean, but the converse
need not be true.

8See Lee, White, and Granger (1993, section 2) for a presentation of the test statistic's
formula and computation method.
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statistic from the surrogates is never small enough relative to the value of

the statistic computed from the data - see Kaplan (1994) or Barnett et al.

(1997) for more details about this procedure.

5 Evidence on Nonlinearity and Chaos

A number of researchers have recently focused on testing for nonlinear-

ity in general and chaos in particular in macroeconomic time series. There

are many reasons for this interest. Chaos, for example, represents a radical

change of perspective on business cycles. Business cycles receive an endoge-

nous explanation and are traced back to the strong nonlinear deterministic

structure that can pervade the economic system. This is di�erent from the

(currently dominant) exogenous approach to economic uctuations, based

on the assumption that economic equilibria are determinate and intrinsically

stable, so that in the absence of continuing exogenous shocks the economy

tends towards a steady state, but because of stochastic shocks a stationary

pattern of uctuations is observed.9

There is a broad consensus of support for the proposition that the (macroe-

conomic) data generating processes are characterized by a pattern of nonlin-

ear dependence, but there is no consensus at all on whether there is chaos

in macroeconomic time series. For example, Brock and Sayers (1988), Frank

and Stengos (1988), and Frank, Gencay, and Stengos (1988) �nd no evidence

of chaos in U.S., Canadian, and international, respectively, macroeconomic

time series. On the other hand, Barnett and Chen (1988), claimed successful

detection of chaos in the (demand-side) U.S. Divisia monetary aggregates.

Their conclusion was further con�rmed by DeCoster and Mitchell (1991,

1994). This published claim of successful detection of chaos has generated

considerable controversy, as in Ramsey, Sayers, and Rothman (1990) and

Ramsey and Rothman (1994), who raised questions regarding virtually all

published tests of chaos. Further results relevant to this controversy have

recently been provided by Serletis (1995).

9Chaos could also help unify di�erent approaches to structural macroeconomics. As
Grandmont (1985) has shown, for di�erent parameter values even the most classical
of economic models can produce stable solutions (characterizing classical economics) or
more complex solutions, such as cycles or even chaos (characterizing much of Keynesian
economics)
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Although the analysis of macroeconomic time series has not yet led to

particularly encouraging results (mainly due to the small samples and high

noise levels for most macroeconomic series), as can be seen from Table 1,

there is also a substantial literature testing for nonlinear dynamics on �nan-

cial data.10 This literature has led to results which are as a whole more

interesting and more reliable than those of macroeconomic series, probably

due to the much larger number of data available and their superior quality

(measurement in most cases is more precise, at least when we do not have

to make recourse to broad aggregation). As regards the main conclusions

of this literature, there is clear evidence of nonlinear dependence and some

evidence of chaos.

For example, Scheinkman and LeBaron (1989) studied United States

weekly returns on the Center for Research in Security Prices (CRSP) value-

weighted index, employing the BDS statistic, and found rather strong evi-

dence of nonlinearity and some evidence of chaos.11 Some very similar re-

sults have been obtained by Frank and Stengos (1989), investigating daily

prices (from the mid 1970's to the mid 1980's) for gold and silver, using the

correlation dimension and the Kolmogorov entropy. Their estimate of the

correlation dimension was between 6 and 7 for the original series and much

greater and non-converging for the reshu�ed data.

More recently, Serletis and Gogas (1997) test for chaos in seven East

European black market exchange rates, using the Koedijk and Kool (1992)

monthly data (from January 1955 through May 1990). In doing so, they

use three inference methods, the BDS test, the NEGM test, as well as the

Lyapunov exponent estimator of Gencay and Dechert (1992). They �nd some

consistency in inference across methods, and conclude, based on the NEGM

10For other unpublished work on testing nonlinearity and chaos on �nancial data, see
Abhyankar, Copeland, and Wong (1997, Table 1).

11In order to verify the presence of a nonlinear structure in the data, they also sug-
gested employing the so-called `shu�ing diagnostic'. This procedure involves studying the
residuals obtained by adapting an autoregressive model to a series and then reshu�ing
these residuals. If the residuals are totally random (i.e., if the series under scrutiny is not
characterized by chaos), the dimension of the residuals and that of the shu�ed residuals
should be approximately equal. On the contrary, if the residuals are chaotic and have
some structure, then the reshu�ing must reduce or eliminate the structure and conse-
quently increase the correlation dimension. The correlation dimension of their reshu�ed
residuals always appeared to be much greater than that of the original residuals, which
was interpreted as being consistent with chaos.
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test, that there is evidence consistent with a chaotic nonlinear generation

process in two out of the seven series - the Russian ruble and East German

mark. Altogether, these and similar results seem to suggest that �nancial

series provide a more promising �eld of research for the methods in question.

A notable feature of the literature just summarized is that most re-

searchers, in order to �nd su�cient observations to implement the tests, use

data periods measured in years. The longer the data period, however, the

less plausible is the assumption that the underlying data generation process

has remained stationary, thereby making the results di�cult to interpret.

In fact, di�erent conclusions have been reached by researchers using high-

frequency data over short periods. For example, Abhyankar, Copeland, and

Wong (1995) examine the behavior of the U.K. Financial Times Stock Ex-

change 100 (FTSE 100) index, over the �rst six months of 1993 (using 1-, 5-,

15-, 30-, and 60-minute returns). Using the Hinich (1982) bispectral linearity

test, the BDS test, and the NEGM test, they �nd evidence of nonlinearity,

but no evidence of chaos.

More recently, Abhyankar, Copeland, and Wong (1997) test for nonlinear

dependence and chaos in real-time returns on the world's four most important

stock-market indices - the FTSE 100, the Standard & Poor 500 (S&P 500)

index, the Deutscher Aktienindex (DAX), and the Nikkei 225 Stock Average.

Using the BDS and the NEGM tests, and 15-second, 1-minute, and 5-minute

returns (from September 1 to November 30, 1991), they reject the hypothesis

of independence in favor of a nonlinear structure for all data series, but �nd

no evidence of low-dimensional chaotic processes.

Of course, there is other work, using high-frequency data over short pe-

riods, that �nds order in the apparent chaos of �nancial markets. For exam-

ple, Ghashghaie, Breymann, Peinke, Talkner, and Dodge (1996) analyze all

worldwide 1,472,241 bid-ask quotes on U.S. dollar-German mark exchange

rates between October 1, 1992 and September 30, 1993. They apply phys-

ical principles and provide a mathematical explanation of how one trading

pattern led into and then inuenced another. As the authors conclude, \

... we have reason to believe that the qualitative picture of turbulence that

has developed during the past 70 years will help our understanding of the

apparently remote �eld of �nancial markets".
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6 Controversies

Clearly, there is little agreement about the existence of chaos or even of

nonlinearity in (economic and) �nancial data, and some economists continue

to insist that linearity remains a good assumption for such data, despite the

fact that theory provides very little support for that assumption. It should

be noted, however, that the available tests search for evidence of nonlinearity

or chaos in data without restricting the boundary of the system that could

have produced that nonlinearity or chaos. Hence these tests should reject

linearity, even if the structure of the economy is linear, but the economy is

subject to shocks from a surrounding nonlinear or chaotic physical environ-

ment, as through nonlinear climatological or weather dynamics. Under such

circumstances, linearity would seem an unlikely inference.12

Since the available tests are not structural and hence have no ability to

identify the source of detected chaos, the alternative hypothesis of the avail-

able tests is that no natural deterministic explanation exists for the observed

economic uctuations anywhere in the universe. In other words, the alterna-

tive hypothesis is that economic uctuations are produced by supernatural

shocks or by inherent randomness in the sense of quantum physics. Consid-

ering the implausibility of the alternative hypothesis, one would think that

�ndings of chaos in such nonparametric tests would produce little controversy,

while any claims to the contrary would be subjected to careful examination.

Yet, in fact the opposite seems to be the case.

We argued earlier that the controversies might stem from the high noise

level that exists in most aggregated economic time series and the relatively

low sample sizes that are available with economic data. However, it also

appears that the controversies are produced by the nature of the tests them-

selves, rather than by the nature of the hypothesis, since linearity is a very

strong null hypothesis, and hence should be easy to reject with any test and

any economic or �nancial time series on which an adequate sample size is

available. In particular, there may be very little robustness of such tests

across variations in sample size, test method, and data aggregation method

- see Barnett et al. (1995) on this issue.

It is also possible that none of the tests for chaos and nonlinear dynamics

12In other words, not only is there no reason in economic theory to expect linearity within
the structure of the economy, but there is even less reason to expect to �nd linearity in
nature, which produces shocks to the system.
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that we have discussed completely dominates the others, since some tests

may have higher power against certain alternatives than other tests, without

any of the tests necessarily having higher power against all alternatives. If

this is the case, each of the tests may have its own comparative advantages,

and there may even be a gain from using more than one of the tests in a

sequence designed to narrow down the alternatives.

To explore this possibility, Barnett with the assistance of Jensen designed

and ran a single blind controlled experiment, in which they produced sim-

ulated data from various processes having linear, nonlinear chaotic, or non-

linear nonchaotic signal. They transmitted each simulated data set by email

to experts in running each of the statistical tests that were entered into the

competition. The emailed data included no identi�cation of the generating

process, so those individuals who ran the tests had no way of knowing the

nature of the data generating process, other than the sample size, and there

were two sample sizes: a `small sample' size of 380 and a `large sample' size

of 2000 observations.

In fact �ve generating models were used to produce samples of the small

and large size. The models were a fully deterministic, chaotic Feigenbaum

recursion (Model I), a generalized autoregressive conditional heteroskedastic-

ity (GARCH) process (Model II), a nonlinear moving average process (Model

III), an autoregressive conditional heteroskedasticity (ARCH) process (Model

IV), and an autoregressive moving average (ARMA) process (Model V). De-

tails of the parameter settings and noise generation method can be found in

Barnett et al. (1996). The tests entered into this competition were Hinich's

bispectrum test, the BDS test, White's test, Kaplan's test, and the NEGM

test of chaos.

The results of the competition are available in Barnett et al. (1997) and

are summarized in Table 2. They provide the most systematic available

comparison of tests of nonlinearity and indeed do suggest di�ering powers

of each test against certain alternative hypotheses. In comparing the results

of the tests, however, one factor seemed to be especially important: subtle

di�erences existed in the de�nition of the null hypothesis, with some of the

tests being tests of the null of linearity, de�ned in three di�erent manners in

the derivation of the test's properties, and one test being a test of the null of

chaos. Hence there were four null hypotheses that had to be considered to

be able to compare each test's power relative to each test's own de�nition of

the null.
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Since the tests do not all have the same null hypothesis, di�erences among

them are not due solely to di�erences in power against alternatives. Hence

one could consider using some of them sequentially in an attempt to narrow

down the inference on the nature of the process. For example, the Hinich test

and the White test could be used initially to �nd out whether the process

lacks third order nonlinear dependence and is linear in the mean. If either

test rejects its null, one could try to narrow down the nature of the nonlin-

earity further by running the NEGM test to see if there is evidence of chaos.

Alternatively, if the Hinich and White tests both lead to acceptance of the

null, one could run the BDS or Kaplan test to see if the process appears to

be fully linear. If the data leads to rejection of full linearity but acceptance

of linearity in the mean, then the data may exhibit stochastic volatility of

the ARCH or GARCH type.

In short, the available tests provide useful information, and such com-

parisons of other tests could help further to narrow down alternatives. But

ultimately we are left with the problem of isolating the nature of detected

nonlinearity or chaos to be within the structure of the economy. This �nal

challenge remains unsolved, especially in the case of chaos.

7 Conclusion

Recently there has been considerable criticism of the existing research

on chaos, as for example in Granger's (1994) review of Benhabib's (1992)

book. The presence of dynamic noise (i.e., noise added in each iteration

step) makes it di�cult and perhaps impossible to distinguish between (noisy)

high-dimensional chaos and pure randomness. The estimates of the fractal

dimension, the correlation integral, and Lyapunov exponents of an underlying

unknown dynamical system are sensitive to dynamic noise, and the problem

grows as the dimension of the chaos increases. The question of the `impos-

sibility' of distinguishing between high-dimensional chaos and randomness

has recently attracted some attention, as for example in Radunskaja (1994),

Bickel and B�uhlmann (1996), and Takens (1997). Analogously, Bickel and

B�uhlmann (1996) argue that distinguishing between linearity and nonlinear-

ity of a stochastic process may become impossible as the order of the linear

�lter increases. In a time series framework, it is prudent to limit such tests

to the use of low order linear �lters as approximations to nonlinear processes
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when testing for general nonlinearity, and tests for low dimensional chaos,

when chaotic nonlinearity is of interest | see also Barnett et al. (1997,

footnote 11).

However, in the �eld of economics, it is especially unwise to take a strong

opinion (either pro or con) in that area of research. Contrary to popular opin-

ion within the profession, there have been no published tests of chaos `within

the structure of the economic system', and there is very little chance that

any such tests will be available in this �eld for a very long time. Such tests

are simply beyond the state of the art. Existing tests cannot tell whether

the source of detected chaos comes from within the structure of the economy,

or from chaotic external shocks, as from the weather. Thus, we do not have

the slightest idea of whether or not asset prices exhibit chaotic nonlinear

dynamics produced from the nonlinear structure of the economy (and hence

we are not justi�ed in excluding the possibility). Until the di�cult problems

of testing for chaos `within the structure of the economic system' are solved,

the best that we can do is to test for chaos in economic time series data,

without being able to isolate its source. But even that objective has proven

to be di�cult. While there have been many published tests for chaotic non-

linear dynamics, little agreement exists among economists about the correct

conclusions.
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TABLE 1. SUMMARY OF PUBLISHED RESULTS OF NONLINEAR

AND CHAOS TESTING ON FINANCIAL DATA

Study Data N Tests

Serletis & Seven East European 438 a. BDS

Gogas (1997) black-market exchange rates b. NEGM

c. Gencay & Dechert

Abhyankar, Copeland, Real-time returns on four 2,268 - 97,185 a. BDS

and Wong (1997) stock-market indices b. NEGM

Abhyankar, Copeland, FTSE 100 60,000 a. Bispectral linearity te

and Wong (1997) b. BDS

c. NEGM

Hsieh (1991) Weekly S&P 500 and 1,297 - 2,017 BDS

CRSP value weighted returns

Frank & Gold and silver rates 2,900 - 3,100 a. Correlation dimension

Stengos (1989) of return b. Kolmogorov entropy

Hinich & Dow Jones industrial 750 Bispectral Gaussianity

Patterson (1989) average and linearity tests

Scheinkman & Daily CRSP value 5,200 BDS

LeBaron (1989) weighted returns

Brockett, Hinich & 10 Common U.S. stocks 400 Bispectral Gaussianity

Patterson (1988) and $-yen spot and and linearity tests

forward exchange rates
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TABLE 2. RESULTS OF A SINGLE-BLIND CONTROLLED COMPETITION

AMONG TESTS FOR NONLINEARITY AND CHAOS

Small Sample Large Sample

Test Null hypothesis Successes Failures Successes Failures

Hinich Lack of 3rd order 3 2 3 plus ambiguous 1 plus ambiguo

nonlinear dependence in 1 case in 1 case

BDS Linear process 2 Ambiguous 5 0

in 3 cases

NEGM Chaos 5 0 5 0

White Linearity in mean 4 1 4 1

Kaplan Linear process 5 0 5 0

Source: Barnett, Gallant, Hinich, Jungeilges, Kaplan, and Jensen (1997, tables 1-4, 6-7, and 9-10

A test is a success when it accepts the null hypothesis when it is true and rejects it when it is fal
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