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Abstract

We consider a two-date model of a financial exchange economy with finitely many agents having nonordered
preferences and portfolio constraints. There is a market for physical commodities at any state today or to-
morrow and financial transfers across time and across states are allowed by means of finitely many nominal
assets or numéraire assets. We prove a general existence result of equilibria for such a financial exchange
economy in which portfolios are defined by linear constraints, extending the framework of linear equality
constraints by Balasko et al. (1990), and the existence results in the unconstrained case by Cass (1984,
2006), Werner (1985), Duffie (1987), and Geanakoplos and Polemarchakis (1986). Our main result is a
consequence of an auxiliary result, also of interest for itself, in which agents’ portfolio constraints are de-
fined by general closed convex sets and the financial structure is assumed to satisfy a ”nonredundancy-type”
assumption, weaker than the ones in Radner (1972) and Siconolfi (1989).

Keywords: Restricted participation, portfolio constraints, financial exchange economy, equilibrium, exis-
tence, arbitrage-free asset prices
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1. Introduction

Since the seminal paper by Radner (1972) proving the existence of equilibria in a financial exchange
economy with bounded portfolio sets, and the non-existence issue raised by Hart (1975), Duffie and Shafer
(1985, 1986) showed a generic existence result with real assets. An extensive body of literature built upon
their argument, see e.g. Geanakopolos and Shafer (1990), Hirsch et al. (1990), Husseini et al. (1990) and
Bich and Cornet (2004, 2009). Subsequently, the literature on the existence problem paid particular attention
to incomplete asset markets with only nominal assets or only numéraire assets; this was considered either
in the case of unconstrained agents’ portfolio holdings, e.g. Cass (1984, 2006), Werner (1985), or Duffie
(1987) for nominal assets and Geanakoplos and Polemarchakis (1986) for numéraire assets, as well as when
agents’ participation to financial markets might be restricted.

With restricted participation, in addition to the budget constraint, each agent i faces exogenous portfolio
constraints zi ∈ Zi ⊂ RJ , where J denotes the (finite) number of assets in the economy. The presence of
such portfolio constraints is a natural cause of market incompleteness and allows to capture a wide range
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of imperfections in the financial markets, such as short selling constraints, collateral requirements, and
more generally institutional constraints. Elsinger and Summer (2001) give an extensive discussion of these
institutional constraints and how to model them in a general financial framework. The existence problem
had recently a growing interest since the first work by Siconolfi (1989), and Cass (1984, 2006). Linear
equality constraints are considered by Balasko et al. (1990) with nominal assets, and by Polemarchakis
and Siconolfi (1997) with real assets. More recently, the case of portfolio sets Zi which are closed, convex
subsets containing zero as in Siconolfi (1989) is considered by Angeloni and Cornet (2006) for real assets
and by Martins-da-Rocha and Triki (2005), Hahn and Won (2007), and Cornet and Gopalan (2010) in the
nominal case.

This paper considers a two-date stochastic model (t = 0 and t = 1) of a financial exchange economy
with finitely many states of nature, one of which is revealed at t = 1. There is a market for finitely many
physical goods at every state today or tomorrow and financial transfers across time and across states are
allowed by means of finitely many assets. There are finitely many agents with non-ordered preferences
and portfolio constraints described by closed, convex subsets containing zero. Our contribution is twofold.
First, when financial assets are nominal or numéraire, we provide a general existence result of equilibria
(Theorem 1). Apart from standard assumptions on the consumption side (preferences and endowments), we
assume that portfolio restrictions are defined by linear inequality constraints. This extends the framework
of linear equality constraints considered by Balasko et al. (1990), and the standard model of unconstrained
portfolios. Our existence result generalizes previous work by Cass (1984), Werner (1985), Duffie (1987),
and Geanakoplos and Polemarchakis (1986).

Our second contribution provides an auxiliary result (Theorem 2) which is the key tool in the proof
of Theorem 1. In this auxiliary result, we make an additional ”nonredundancy-type” (or ”reduced form”)
assumption (F3 in the text) on the financial side. In the case of nominal assets and no restrictions on portfolio
trades (Zi = RJ for all i), Assumption F3 is equivalent to the fact that the payoff matrix V has no redundant
assets, that is, rankV = J or equivalently ker V = {0}. In this case there is a priori no loss of generality
in assuming that there are no redundant assets, otherwise, by deleting the redundant columns we obtain a
”reduced” financial economy, whose equilibria yield equilibria in the original one. However, as mentioned
in Balasko et al. (1990), one significant source of restricted participation is financial intermediation which
typically involves redundancy. So there is no a priori grounds for the standard Full Rank Assumption in the
presence of restricted participation, which therefore will be superseded by Assumption F3.

In the case of linear equality portfolio constraints (i.e., the Zi’s are vector spaces), Balasko et al. (1990)
show how to transform the agents’ financial opportunities to obtain a ”reduced” financial economy in which
each agent’s portfolio choice is a subspace having the same dimension as the wealth space it generates,
that is, Zi ∩ ker V = {0} for all i (Siconolfi (1989)); moreover, every equilibrium in the ”reduced” economy
leads to an equilibrium in the original economy. In this paper, we extend the analysis to the case of linear
inequality constraints with nominal or numéraire assets. We show how to ”reduce” the financial structure
to obtain a new financial structure satisfying Assumption F3, a weaker condition than Siconolfi (1989)’s,
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keeping the correspondence between the equilibria; moreover, Assumption F3 coincides with Siconolfi’s
when the Zi’s are linear subspaces. Finally, we mention the companion papers Aouani and Cornet (2008a,b)
and the paper by Hahn and Won (2007), which study the more general case of closed convex portfolio sets.

The paper is organized as follows. In Section 2, we describe the financial exchange economy, we state
our main existence result (Theorem 1) in the case of nominal or numéraire assets, and we state the auxiliary
result (Theorem 2) under the additional Assumption F3. This section also provides examples under which
Assumption F3 and the Financial Survival Assumption are satisfied. In Section 2.6, the proof of our main
result (Theorem 1) is given as a consequence of Theorem 2 by ”reducing” the initial economy into a new
economy satisfying Assumption F3 whose equilibria yield equilibria in the original one. Finally, we also
discuss the relationship with the existence results in the literature by Radner (1972), Siconolfi (1989), Cass
(1984, 2006), Werner (1985), Duffie (1987) and Geanakoplos and Polemarchakis (1986). Section 3 is
devoted to the proof of the auxiliary result (Theorem 2). The Appendix gathers the proofs of some lemmata
used in the proofs of Theorems 1 and 2.

2. The model and the main result

2.1. The stochastic financial exchange economy
1The stochastic model considers two dates: t = 0 (today) and t = 1 (tomorrow). At the second date,

there is a nonempty finite set S := {1, . . . , S } of states of nature, one of which prevails at time t = 1 and is
only known at time t = 1. For convenience, s = 0 denotes the state of the world (known with certainty) at
period 0 and we let S̄ = {0}∪S = {0, 1, . . . , S }. At each state, today and tomorrow, there is a spot market for
a positive number ` of divisible physical goods and we assume that the goods are perishable, i.e., each good
does not last more than one period. In this model a commodity is a couple (h, s), specifying the physical
good h = 1, . . . , ` and the state 0, 1, . . . , S at which it is available. Thus the commodity space is RL, where
L = `(1 + S ). An element x (resp. p) in RL is called a consumption (resp. a price) and we will use the
notation x = (x(s))s∈S̄ ∈ RL, where x(s) = (x1(s), . . . , x`(s)) ∈ R`, denotes the spot consumption at node
s ∈ S̄.

1We shall use hereafter the following notations. If I is a finite set, whose number of elements is I, the space RI (identified to
the space RI of functions x : I → R whenever necessary) is endowed with the scalar product x · y :=

∑I
i=1 xiyi, and we denote

by ‖x‖ :=
√

x · x the Euclidean norm, BI(x, r) := {y ∈ RI : ‖y − x‖ ≤ r}, the closed ball centered at x ∈ RI of radius r > 0. For
x = (xi) and y = (yi) in RI , the notation x ≥ y (resp. x > y, x � y) means that, for every i, xi ≥ yi (resp. x ≥ y and x , y, resp.
xi > yi) and we let RI

+ = {x ∈ RI : x ≥ 0}, RI
++ = {x ∈ RI : x � 0}. Let X ⊂ RI , the span of X is the linear subspace of RI ,

denoted < X >, which is the set of all the K-linear combinations
∑K

k=1 αk xk of vectors xk ∈ X for every integer K, and we denote
by int X, cl X, respectively, the interior and the closure of X. Consider a I × J-matrix A with I rows and J columns, with entries
A j

i (i ∈ I, j ∈ J), we denote by Ai the i-th row of A (hence a row vector, i.e., a (1 × J)-matrix, often identified to a vector in RJ

when there is no risk of confusion) and A j denotes the j-th column of A (hence a column vector, i.e., a I × 1-matrix, which may
similarly be identified to a vector in RI). If there is no risk of confusion, we will use the same notation for the I× J-matrix A and the
associated linear mapping A : RJ → RI . We shall denote by ker A := {x ∈ RJ : Ax = 0} the kernel of A, by Im A := {Ax : x ∈ RJ}

the image of A, and by rank A the rank of the matrix A, that is, the dimension of Im A. We also denote ker A by {A = 0} and we let
{A ≥ 0} := {x ∈ RJ : Ax ≥ 0}.
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In the exchange economy, there is nonempty finite set I := {1, . . . , I} of consumers. Each consumer i ∈ I
is endowed with a consumption set Xi ⊂ RL, a preference correspondence Pi, from

∏
k∈I Xk to Xi, and an

endowment vector ei ∈ RL. The set Xi is the set of her possible consumptions, and for x ∈
∏

i∈I Xi, Pi(x) is
the set of consumption plans in Xi which are strictly preferred to xi by consumer i, given the consumption
plans (xi′)i′,i of the other agents. Finally ei = (ei(s))S̄ lists the state endowment ei(s) across states, with
ei(0) being known with certainty and ei(s) (s , 0) being available only if state s prevails at t = 1. The
exchange economy can thus be summarized by E = (Xi, Pi, ei)i∈I.

The financial structure consists of a finite set J := {1, . . . , J} of assets. An asset j is a contract which is
issued at t = 0 and promises to deliver the financial payoff V j

s (p) at state s ∈ S of period t = 1 if state s
prevails (for a given commodity price p ∈ RL). So, the payoff of asset j across tomorrow states is described
by the mapping p 7→ V j(p) := (V j

s (p))s∈S ∈ RS . The financial structure is described by the payoff matrix
mapping V : p 7→ V(p), where V(p) is the S × J-matrix, whose columns are the payoffs V j(p) (1, . . . , J)
of the J assets. We denote by z = (z j) ∈ RJ , the portfolio of some consumer and we will use the standard
convention: if z j > 0 (resp. z j < 0), then z j (resp. |z j|) represents the quantity of asset j bought (resp. sold)
at period 0. We assume that portfolios may be constrained, that is, each agent i is endowed with a portfolio
set Zi ⊂ RJ which describes the portfolios that are possible for her. If some agent i ∈ I has no constraints on
her portfolio choices, then Zi = RJ . Throughout this paper we consider portfolio sets that are closed, convex
and contain zero for every agent, a framework general enough to cover most of the constraints considered
in the literature (see Elsinger and Summer (2001)). The financial structure can be summarized by the list
F := (V, (Zi)i∈I) and the stochastic financial exchange economy (E,F ) can thus be described by the list

(E,F ) :=
(
(Xi, Pi, ei)i∈I; (V, (Zi)i∈I)

)
.

2.2. Equilibria and absence of arbitrage opportunities

Given commodity and asset prices (p, q) ∈ RL × RJ , the budget set of consumer i is2

Bi
F

(p, q) =

{
(xi, zi) ∈ Xi × Zi :

p(0) · xi(0) + q · zi ≤ p(0) · ei(0)
p(s) · xi(s) ≤ p(s) · ei(s) + Vs(p) · zi, ∀s ∈ S

}
= {(xi, zi) ∈ Xi × Zi : p (xi − ei) ≤ W(p, q)zi},

where W(p, q) denotes the total payoff matrix, that is, the (1 + S ) × J-matrix
(
−q

V(p)

)
.

We now introduce the standard equilibrium notion in this model.

Definition 1. An equilibrium of the economy (E,F ) is a list
(
p̄, q̄, x̄, z̄

)
∈ RL ×RJ × (RL)I × (RJ)I such that

(i) for every i, (x̄i, z̄i) maximizes the preference Pi under the budget constraint, that is

(x̄i, z̄i) ∈ Bi
F

( p̄, q̄) and Bi
F

(p̄, q̄) ∩ (Pi(x̄) × Zi) = ∅,

(ii) [Market Clearing]
∑

i∈I x̄i =
∑

i∈I ei and
∑

i∈I z̄i = 0.

2For every p = (p(s)), x = (x(s)) in RL, we denote by p x the vector
(
p(s) · x(s)

)
s∈S̄.
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We make the following standard assumptions C1-C6 on the consumption side. We denote by A(E) the set
of attainable allocations of the economy, that is,A(E) = {(xi)i∈ ∈

∏
i∈I Xi :

∑
i∈I xi =

∑
i∈I ei}.

Consumption Assumption C For every i ∈ I and for every x = (xi)i∈I ∈
∏

i Xi

C1 Consumption Sets: Xi is a closed, convex, bounded below subset of RL;

C2 Continuity: The correspondence Pi, from
∏

k∈I Xk to Xi, is lower semicontinuous 3 with open values
in Xi (for the relative topology of Xi);

C3 Convexity: Pi(x) is convex;

C4 Irreflexivity: xi < Pi(x);

C5 Local Non-Satiation LNS:

(a) ∀x ∈ A(E), ∀s ∈ S , ∃x′i(s) ∈ R`, (x′i(s), xi(−s)) ∈ Pi(x),4

(b) ∀yi ∈ Pi(x)], (xi, yi] ⊂ Pi(x);

C6 Consumption Survival CS: ei ∈ intXi.

We note that these assumptions are standard in a model with nonordered preferences; the assumptions on Pi

are satisfied in particular when agents’ preferences are represented by utility functions that are continuous,
strongly monotonic, and quasi-concave. We now recall that equilibrium asset prices preclude arbitrage
opportunities under the above Non-Satiation Assumption. We denote by AZ the asymptotic cone 5 of a
nonempty set Z ⊂ RJ .

Proposition 1. Assume LNS and the convexity of the portfolio sets Zi (i ∈ I). If ( p̄, q̄, x̄, z̄) is an equilibrium
of the economy (E,F ), then q̄ is arbitrage-free at p̄, in the sense that

W( p̄, q̄)(
⋃

i

AZi) ∩ RS̄+ = {0}.

We denote by Q( p̄) the set of arbitrage-free asset prices q̄ at p̄ ∈ RL.

3Let Φ be a correspondence from X to Y , that is, Φ is a mapping from X to 2Y . Then Φ is said to be lower semicontinuous
(l.s.c.) at xo ∈ X, if for every open set V ⊂ Y such that Φ(xo) ∩ V , ∅, there exists an open neighborhood U of xo in X such that
Φ(x) ∩ V , ∅ for all every x ∈ U. The correspondence Φ is said to be l.s.c. if it is l.s.c.at every point of X. Finally, we denote by
G(Φ) := {(x, y) ∈ X × Y : y ∈ Φ(x)} the graph of Φ.

4Given xi ∈ Xi and s ∈ S̄, we denote xi(−s) := (xi(s′))s′,s.
5The asymptotic cone of a nonempty subset Z of RJ is the set AZ := {limn λ

nzn : (λn)n ↓ 0 and zn ∈ Z for all n}. As
a consequence from the definition, one has A(clZ) = AZ and we refer to Debreu (1959) for a general reference. When Z is
additionally assumed to be convex, then AZ = 0+(clZ), where 0+(C) := {ζ ∈ RJ : ζ + C ⊂ C} is the recession cone of the convex
set C ⊂ RJ (see Rockafellar (1970)). When Z is convex, the inclusion 0+(Z) ⊂ AZ holds but may be strict when Z is not closed.
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Proof. Suppose that for some i ∈ I, there exists a portfolio ζi ∈ AZi such that W( p̄, q̄)ζi > 0, namely
[W(q̄)ζi](s) ≥ 0, for every s ∈ S̄, with at least one strict inequality, say for s̄ ∈ S̄. ¿From assumption LNS,
there exists xi ∈ Pi(x̄) such that xi(−s̄) = x̄i(−s̄).

For t > 0 large enough, p̄ (xi − ei) ≤ W( p̄, q̄)(z̄i + t ζi). Since z̄i + t ζi ∈ Zi, we get (xi, z̄i + t ζi) ∈ Bi
F

( p̄, q̄)
but since xi ∈ Pi(x̄), this contradicts the optimality of (x̄i, z̄i) in Bi

F
( p̄, q̄).

2.3. Nominal and numéraire assets

If the financial structure F is nominal, the matrix V(p) of financial payoffs does not depend on the
commodities price vector p and is denoted R.

A numéraire asset is defined as follows. Let us choose a commodity bundle ν ∈ R`, a typical example
being ν = (0, . . . , 0, 1), when the `-th good is chosen as numéraire. A numéraire asset j is a real asset
which delivers the commodity bundle A j

s = R j
sν ∈ R` at state s of date t = 1 if this state s prevails. Thus

the payoff at state s is (Vν)
j
s(p) = (p(s) · ν)R j

s for the commodity price p = (p(s)) ∈ RL. For a numéraire
financial structure, i.e., all the assets are numéraire assets (for the same commodity bundle ν), we denote
R the S × J-matrix with entries R j

s and, for p ∈ RL, we denote Vν(p) the associated S × J-payoff-matrix,
which has for entries (Vν)

j
s(p) = (p(s) · ν)R j

s, i.e.

Vν(p) =


p(1) · ν 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 p(S ) · ν


R.

In the nominal case, the set Q(p) of arbitrage-free prices, that is, the set of asset prices q satisfying(
−q
R

)
(
⋃

i

AZi) ∩ RS̄+ = {0} (2.1)

does not depend on the price p, hence is simply denoted QR. In the numéraire case, under the Desirability
Assumption (made in FN0) below, if (p̄, q̄, x̄, z̄) is an equilibrium, then p̄(s) · ν > 0 for all s ∈ S (see the
proof of Lemma 3 in Appendix 4.3) and we notice that, if p̄(s) · ν > 0 for all s ∈ S , then Q( p̄) = QR

as defined above by (2.1). Thus, every equilibrium asset price q̄ belongs to QR (by Proposition 1) in the
nominal case and in the numéraire case.

Given the financial structure F =
(
V, (Zi)i∈I

)
, we denote ZF =< ∪i∈IZi > the linear space where financial

activity takes place. We say that Z ⊂ RJ is a convex polyhedral set if it can be defined by finitely many
linear inequalities, i.e., Z := {z ∈ RJ : Bz ≥ b} for some K× J-matrix B and some b ∈ RK . Clearly this takes
into account the case of a set defined by finitely many linear inequalities and/or equality constraints, since
each equality constraint can be equivalently replaced by two inequality constraints. We can now present the
general assumptions on the financial side:

FN Financial Assumption in the Nominal-Numéraire case:
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FN0: The financial structure F is either (i) nominal, i.e., V(p) = R is independent of p, or

(ii) numéraire, i.e., V(p) = Vν(p), for every agent i, the correspondence Pi has an open graph and the
commodity bundle ν ∈ R` is desirable at every state s ∈ S, i.e., for all x ∈ A(E), for all t > 0, (xi(s) +

tν, xi(−s)) ∈ Pi(x);

FN1: For all i ∈ I, Zi is a convex polyhedral set, 0 ∈ Zi, and V : RL → RS×J is continuous;

FN2: Financial Survival ∀i ∈ I, ∀q ∈ clQR ∩ ZF , q , 0, ∃ζi ∈ Zi, q · ζi < 0.

Assumption FN0 is standard; note however that the open graph assumption and the desirability assump-
tion are slightly stronger than the corresponding ones in C, but these assumptions on Pi are still satisfied
when ν ∈ R`

+\{0} and agents’ preferences are represented by utility functions that are continuous, strongly
monotonic, and quasi-concave. Assumption FN1 considers the class of convex polyhedral portfolio sets
of particular interest for economic applications; in particular it takes into account the case of linear equal-
ity constraints (portfolio sets which are linear spaces) as considered by Balasko et al. (1990). Sufficient
conditions for Assumption FN2 to hold are provided in Section 2.4.

2.4. Existence of equilibria in the nominal and numéraire case

We now state our main existence result.

Theorem 1. [Nominal or numéraire assets] Let the economy (E,F ) satisfy assumptions C and FN, then it
admits an equilibrium ( p̄, q̄, x̄, z̄) such that || p̄(0)|| + ||q̄|| = 1 and || p̄(s)|| = 1 for s ∈ S.

The proof of Theorem 1 is given in Section 2.6 as a consequence of an auxiliary result (Theorem 2) stated
in the next section. We now give some consequences of Theorem 1. The following Corollary 2 and 3 allow
to extend to the case of consumers with nonordered preferences the existence results of Cass (1984), Duffie
(1987), and Werner (1985) in the nominal case and Geanakoplos and Polemarchakis (1986) in the numéraire
case.

Corollary 1. The financial exchange economy (E,F ) admits an equilibrium under Assumptions C, FN0,
FN1 if

- 0 ∈ intZi for all i.

Corollary 2. The financial exchange economy (E,F ) admits an equilibrium under Assumption C if

- F consists of nominal assets;

- Zi = RJ for all i.

Corollary 3. The financial exchange economy (E,F ) admits an equilibrium under Assumption C if

- F consists of numéraire assets and satisfies FN0 (ii);

- Zi = RJ for all i.
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The proof of the above corollaries is a consequence of Theorem 1 and of the following proposition, which
gives examples under which the Financial Survival Assumption FN2 is satisfied.

Proposition 2. Let F =
(
V, (Zi)i

)
be a financial structure, then Assumption FN2 (and also Assumption F2

defined hereafter) is satisfied if, either (a) or (b) holds
(a) For every i ∈ I, one of the following conditions holds:

(i) Zi = RJ (unrestricted participation),

(ii) Zi = −zi + RJ
+, for some zi ∈ RJ

++ (bounds on short sales for every asset),

(iii) Zi = [−z1
i +RJ1

+ ]×RJ2 , for some z1
i ∈ RJ1

++, with J = J1 + J2 (bounds on short sales for some assets),

(iv) Zi is the closed ball {z ∈ RJ : ‖z‖ ≤ r} for some r > 0 (bounded portfolios)6,

(v) 0 ∈ intZi;

(b) For every i ∈ I, Zi = {0} (pure spot markets).

Proof. Part (a). First notice that each condition (i), (ii), (iii) or (iv) implies (v). Thus we need only show
Assumption FN2 holds under Condition (v). Let q ∈ [clQR ∩ ZF ] \ {0}, and let i ∈ I, then choose ζi =

−εq/‖q‖. Then, for ε > 0 small enough, ζi ∈ B(0, ε) ⊂ Zi (since 0 ∈ intZi by Condition (v)) and q · ζi =

−ε‖q‖ < 0.

Part (b). We now prove that Assumption FN2 holds in the case of pure spot markets. Notice that ZF = {0}
and [clQR ∩ ZF ] \ {0} = ∅, hence FN2 holds.

2.5. An auxilary existence result
In this section, we state an auxiliary existence result that will be the key tool to prove Theorem 1 in

Section 2.6. This result, also of interest for itself, does not assume neither that the financial structure is
nominal or numéraire, nor that the portfolio sets are convex polyhedra. It assumes however the additional
Assumption F3 that is presented below. We posit the following new set of assumptions on the financial
structure.

Financial Assumption F:

F0: The set AF (p) :=
∑

i∈I(AZi∩{V(p) ≥ 0}) does not depend on p (hence is simply denoted AF hereafter);

F1: For every i ∈ I, Zi is closed, convex, 0 ∈ Zi, and V : RL → RS×J is continuous;

F2: Financial Survival ∀i ∈ I, ∀p ∈ RL,p(0) = 0, ∀q ∈ clQ(p) ∩ ZF , q , 0, ∃ζi ∈ Zi, q · ζi < 0;

F3: The set AF is pointed, i.e., AF ∩ −AF = {0}.

Assumptions F0 and F1 weaken the previous assumptions FN0 and FN1, respectively, and F2 adapts
the previous Survival Assumption FN2 to the more general case considered here. Sufficient conditions for
Assumptions F0 and F3 to hold are given at the end of this section.

We now state our second existence result.

6The result is true for any norm ‖ · ‖ of RJ and the set Zi will be polyhedral if we take for example the norm ‖z‖∞ := max{|z j| :
j = 1 . . . , J}.
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Theorem 2. Let the economy (E,F ) satisfy assumptions C and F, then it admits an equilibrium ( p̄, q̄, x̄, z̄)
such that || p̄(0)|| + ||q̄|| = 1 and || p̄(s)|| = 1 for s ∈ S.

The proof of Theorem 2 is given in Section 3.

We can now give two consequences of Theorem 2 which extend the results by Radner (1972) and the
framework of Siconolfi (1989) to the case of agents with nonordered preferences. Note however that the
Survival Assumption F2 is not directly comparable to the one used by Siconolfi (1989) and it is the purpose
of further work to show the relationship between his existence result and Theorem 2.

Corollary 4. The economy (E,F ) admits an equilibrium under assumptions C, F1 in each of the following
cases:

(i) (Radner (1972)) For every i ∈ I, Zi is the closed ball BJ(0, ri), for some ri > 0.

(ii) (Siconolfi (1989)) F consists of nominal assets, F2 holds and AZi ∩ ker R = {0} for every i ∈ I.

The proof of the corollary is a consequence of Theorem 2, Proposition 2, and Remarks 1, and 2, which
give sufficient conditions for Assumptions F2, F0, and F3 to hold.

Remark 1. Assumption F0 is satisfied when

- the financial structure is nominal, i.e., V(p) does not depend on p;

- the set {V(p) ≥ 0} does not depend on p;

- for every i, Zi is bounded (Radner (1972)) since AZi = {0};

- the set clQ(p) does not depend on p (under Assumption F3, by Lemma 4 below);

- the case of numéraire assets is treated in Section 2.6.

Remark 2. Assumption F3 is satisfied when

- ker V = {0} (No redundant assets);

- for every i, Zi is bounded (Radner (1972));

- for every i, ker V ∩ AZi = {0} (Siconolfi (1989)).

Moreover, Assumption F3 is equivalent to the assumption that V has no redundant assets when there are no
restrictions on portfolio trades (Zi = RJ for all i). In the case of nominal assets, it coincides with Siconolfi
(1989)’s assumption when the Zi’s are linear subspaces.

Assumption F3 is crucial in the proof of Theorem 2. Together with F0, it enables us to look for equilibrium
portfolios in an appropriate bounded set, creating thereby a suitable environment for the application of
a fixed point theorem. In this regard, Assumption F3 and Siconolfi (1989)’s assumption serve the same
purpose, but the weaker Assumption F3 is needed if we want to treat the case of linear inequalities instead
of linear equalities. See Section 2.6 for more detail.

Remark 3. We can choose the equilibrium asset price q̄ to be in Q( p̄) ∩ ZF . Indeed, let (p̄, q̄, x̄, z̄) be an
equilibrium of (E,F ) and let q∗ = projZF q̄ then (p̄, q∗, x̄, z̄) is an equilibrium of (E,F ) since for every i ∈ I,
and for every zi ∈ Zi, one has q∗ · zi = q̄ · zi. Moreover, q∗ ∈ Q( p̄) (under LNS by Proposition 1).
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2.6. Proof of Theorem 1

The proof of Theorem 1 is given hereafter, first in the case of nominal assets and then in the case of
numéraire assets. Consider an economy (E,F ) satisfying Assumptions C and FN.

In the case of nominal assets with no restrictions on portfolio trades, there is a priori no loss of generality
in assuming that the payoff matrix V has no redundant assets, that is, rankV = J or equivalently ker V = {0}.
Indeed, otherwise by deleting the redundant columns we obtain a new financial economy whose equilibria
yield equilibria in the original one. Hereafter, we show how to transform the financial structure to obtain a
reduced financial structure, i.e., satisfying Assumption F3, which supersedes the standard assumption of no
redundant assets, while keeping the correspondence between the equilibria. Existence of equilibrium then
follows from Theorem 2. This analysis coincides with the one in Balasko et al. (1990) when portfolio sets
are defined by linear equality constraints and assets are nominal (since the transformed financial structure
they obtain satisfies Siconolfi (1989)’s assumption which is equivalent to F3 in the framework of linear
equality constraints), and extends it to the case of linear inequality constraints with nominal and numéraire
assets.

We modify the financial structure F by considering the reduced financial structure Fπ which has the
same payoff matrix as F and the portfolio sets πZi (i ∈ I) where π is the orthogonal projection mapping7

on the orthogonal space to LF := AF ∩ −AF . We recall that ZF :=< ∪iZi >, ZFπ :=< ∪iπZi > and the
definition of Fπ can be summarized by

Fπ =
(
V(p), (πZi)i

)
,

where π = proj(LF )⊥ , LF := AF ∩ −AF , and AF :=
∑
i∈I

(AZi ∩ {V(p) ≥ 0}) ⊂ ZF .

2.6.1. The nominal case

This section considers the case of a financial structure F = (V, (Zi)i) with nominal assets satisfying the
Assumption FN, and in fact the more general case of a financial structure satisfying Assumptions F0, FN1,
and F2. This more general framework will be needed in Section 2.6.2 to treat the case of numéraire assets.

Step 1. The first step is summarized by Lemma 1, the proof of which is given in Appendix 4.1.

Lemma 1. If F = (V, (Zi)i) satisfies Assumptions F0, FN1, and F2, then Fπ satisfies Assumptions F0-F2,
together with Assumption F3, that is, AFπ ∩ −AFπ = {0}.

Step 2. From Theorem 2 and Step 1, the economy (E,Fπ) admits an equilibrium (p̄, q̄, x̄, z̄).

Step 3. There exists an equilibrium (p∗, q∗, x∗, z∗) of (E,F ) as a consequence of the following lemma, the
proof of which is given in the Appendix 4.2.

7When L is a subset of RJ , we define the polar set of L by Lo := {z ∈ RJ : z · ξ ≤ 0 for all ξ ∈ L} and the orthogonal set to L by
L⊥ := {z ∈ RJ : z · ξ = 0 for all ξ ∈ L}. When L is a linear space and ϕ ∈ RJ , we denote by projLϕ (resp. projL⊥ϕ) the orthogonal
projection of ϕ on L (resp. on L⊥), that is, the unique α ∈ L (resp. β ∈ L⊥) such that ϕ − α ∈ L⊥ (resp. ϕ − β ∈ L).
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Lemma 2. Assume LNS, and let ( p̄, q̄, x̄, z̄) be an equilibrium of (E,Fπ). Then there exists z∗ ∈
∏

i Zi such
that ( p̄, πq̄, x̄, z∗) is an equilibrium of (E,F ).

To end the proof of Theorem 1 we need to check that the equilibrium found in Lemma 2 can be chosen
so that || p̄(0)|| + ||πq̄|| = 1 and ||p̄(s)|| = 1 for s ∈ S. Recall that from Remark 3 we can choose the
equilibrium asset price vector in (E,Fπ), that is q̄, to be in QFπ( p̄) ∩ ZFπ ⊂ ZFπ ⊂ Imπ. Hence πq̄ = q̄ and
|| p̄(0)|| + ||πq̄|| = || p̄(0)|| + ||q̄|| = 1. The fact || p̄(s)|| = 1 for s ∈ S is immediate since we are not changing the
equilibrium commodity prices when we go from an equilibrium in (E,Fπ) to an equilibrium in (E,F ).

2.6.2. The numéraire case

Consider a financial economy with numéraire assets (E, F ) satisfying Assumptions FN (the part (ii)
with numéraire assets). The proof of Theorem 1 consists in applying the Steps 1-3 of the previous section to
a modified financial economy (E, F ε) (for ε > 0 small enough), chosen so that (i) it satisfies Assumptions
F0, FN1, and F2 and (ii) the equilibria of (E, F ε) are also equilibria of the original financial economy
(E,F ).

Step 0. We define the modified financial structure F ε = (Vε, (Zi)i) for ε > 0, by taking the same portfolio
sets Zi as for F and defining the modified payoff matrix Vε, by

Vε(p) =


max{ε, p(1) · ν} 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 max{ε, p(S ) · ν}


R.

The financial exchange economy (E, F ε) satisfies Assumptions F0, FN1, and F2 whenever the econ-
omy (E, F ) satisfies Assumptions FN0-FN2. Indeed, {Vε(p) ≥ 0} = {R ≥ 0} for every p ∈ RL, hence
Vε satisfies Assumption F0. Assumptions F1 and FN1 are obviously satisfied, and assumption F2 is a
consequence of FN2 and the fact that QF ε(p) = QR for every p. The relationship between the equilibria
of the economies (E,F ε) and (E,F ) is then given by the following lemma, the proof of which is given in
Appendix 4.3.

Lemma 3. For ε > 0 small enough, every equilibrium ( p̄, q̄, x̄, z̄) of (E,F ε) such that || p̄(s)|| = 1 for s ∈ S
is an equilibrium of the economy (E,F ).

3. Proof of Theorem 2

We first state a lemma summarizing several properties that will be used hereafter. We recall that

AF (p) :=
∑
i∈I

(AZi ∩ {V(p) ≥ 0}) ⊂ ZF .
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Lemma 4. Under Assumptions F1 and F3, for every p ∈ RL:

(a) The set Q(p) is a convex cone with vertex 0.

(b)
(
clQ(p) ∩ ZF

)o
= −AF (p) + (ZF )⊥. Hence AF (p) ⊂ ZF is closed.

(c) If we additionally assume F0, then for all v = (vi)i ∈ (RS )I the set Kv is bounded, where

Kv :=
{
(z1, · · · , zI , p) ∈ (

∏
i

Zi) × BL(0, 1) : ∀i,V(p)zi ≥ vi,−
∑
i∈I

zi ∈ AF
}
.

The proof of Lemma 4 is given in the Appendix 4.4.

3.1. Truncating the economy

We denote by X̂i the projection of the set of attainable allocations A(E) on Xi. Since A(E) is bounded
(by Assumption C1), the sets X̂i are also bounded for every i ∈ I. Consequently, one can choose r1 > 0
large enough such that

X̂i ⊂ intBL(0, r1) for every i ∈ I,

For i ∈ I, let vi = (vi(s)) ∈ RS , where

vi(s) = −1 + min{p(s) · (xi(s) − ei(s)) : p(s) ∈ B`(0, 1), xi ∈ BL(0, r1)} (s ∈ S), (3.1)

which is well defined from the compactness of the closed balls B`(0, 1) and BL(0, r1). We denote by Ẑi the
projection of Kv on Zi and the sets Ẑi are bounded for every i ∈ I, since Kv is bounded (by Lemma 4).
Consequently, one can choose r2 > 0 large enough such that

Ẑi ⊂ intBJ(0, r2) for every i ∈ I.

We let r = (r1, r2) and for every i ∈ I,

Xr
i = Xi ∩ BL(0, r1), Pr

i (x) = Pi(x) ∩ intBL(0, r1), Zr
i = Zi ∩ BJ(0, r2).

We define the truncated financial economy (Er,F r), which has Xr
i , for consumption sets, Pr

i , for preference
correspondences, Zr

i for portfolio sets. The endowments of consumers and the payoff matrix are the same
as for the economy (E,F ). To summarize, we let

(Er,F r) :=
((

Xr
i , P

r
i , ei

)
i∈I,

(
V, (Zr

i )i∈I
))
.

3.2. The reaction correspondences and the fixed-point argument

We define the set of admissible prices for commodities and assets

Π = {(p, q) ∈ RL × RJ : ||p(0)|| + ‖q‖ ≤ 1,∀s ∈ S, ‖p(s)‖ ≤ 1, and q ∈ clQ(p) ∩ ZF },

and, following Bergstrom (1976), the “modified” budget sets of consumer i, for (p, q) ∈ Π:

Brε
i (p, q) = {(xi, zi) ∈ Xr

i × Zr
i : p (xi − ei) ≤ W(p, q)zi + ε(p, q)},

B̆rε
i (p, q) = {(xi, zi) ∈ Xr

i × Zr
i : p (xi − ei) � W(p, q)zi + ε(p, q)},
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where ε(p, q) = (εs(p, q))s∈S̄ ∈ [0, 1]1+S is defined, for (p, q) ∈ Π, by

εs(p, q) =

 1 − ‖p(0)‖ − ‖q‖ for s = 0

1 − ‖p(s)‖ for s ∈ S.

Claim 3.1. For all (p, q) ∈ Π, B̆rε
i (p, q) , ∅ and Brε

i (p, q) = clB̆rε
i (p, q).

Proof. We first notice that ei ∈ intXr
i for every i ∈ I; indeed, this is a consequence of the facts that

ei ∈ X̂i ⊂ Xi ∩ intBL(0, r1) and ei ∈ intXi (Survival Assumption C6). Let (p, q) ∈ Π. Since ei ∈ intXr
i , for

t > 0 small enough, xr
i := ei − tp ∈ Xr

i . Hence, p (xr
i − ei) = −tp p ≤ 0, and

p(0) ·
(
xr

i (0) − ei(0)
)
− ε0(p, q) = − t‖p(0)‖2 − 1 + ‖p(0)‖ + ‖q‖ < 0 if [p(0) , 0 or q = 0],

p(s) ·
(
xr

i (s) − ei(s)
)
− εs(p, q) = − t‖p(s)‖2 − 1 + ‖p(s)‖ < 0 for all s = 1, . . . , S .

Consequently, if p(0) , 0 or q = 0, then (xr
i , 0) ∈ B̆rε

i (p, q). Assume now that p(0) = 0 and q , 0,
then there exists zi ∈ Zi such that q · zi < 0 (by Assumption F2). We can choose λ > 0 small enough
(λ‖zi‖ ≤ r2) so that zr

i := λzi ∈ Zr
i := Zi ∩ B(0, r2) (since zr

i ∈ B(0, r2), and zr
i ∈ Zi recalling that zi ∈ Zi,

0 ∈ Zi and Zi is convex) and q · zr
i < 0. Again, from above, we can choose λ > 0 small enough so that

p(s) ·
(
xr

i (s) − ei(s)
)
− εs(p, q) < Vs(p) · zr

i for all s ∈ S. Thus, (xr
i , z

r
i ) ∈ B̆rε

i (p, q) , ∅.
We now prove the equality Brε

i (p, q) = clB̆rε
i (p, q). The first inclusion clB̆rε

i (p, q) ⊂ Brε
i (p, q) is im-

mediate. Conversely, let (xi, zi) ∈ Brε
i (p, q) and let (x̆i, z̆i) ∈ B̆rε

i (p, q) , ∅, then (xi, zi) = limt→0(xt
i, z

t
i) ∈

clB̆rε
i (p, q) taking (xt

i, z
t
i) := (1 − t)(xi, zi) + t(x̆i, z̆i) ∈ B̆rε

i (p, q) for all t ∈ [0, 1].

We now introduce an additional agent and, as in (Gale and Mas-Colell (1975, 1979)), we set the following
reaction correspondences defined on Π ×

∏
i∈I Xr

i × Zr
i

Φi(p, q, x, z) =

 Brε
i (p, q) if (xi, zi) < Brε

i (p, q)

B̆rε
i (p, q) ∩ (Pr

i (x) × Zr
i ) if (xi, zi) ∈ Brε

i (p, q),

Φ0(p, q, x, z) = {(p′, q′) ∈ Π : (p′ − p) ·
∑
i∈I

(xi − ei) + (q′ − q) ·
∑
i∈I

zi > 0}.

The main properties of the correspondences Φi are stated in the following lemma, the proof of which is
given in Appendix 4.5.

Lemma 5. For all i ∈ {0} ∪ I, the correspondence Φi is lower semicontinuous with convex values on
Π ×

∏
i∈I Xr

i × Zr
i .

The proof of Theorem 2 relies on the following theorem due to Gale and Mas-Colell (1975).

Theorem 3. Let Io be a finite set, let Ci (i ∈ Io) be a nonempty, compact, convex subset of some Euclidean
space, let C =

∏
i∈I0 Ci and let Φi (i ∈ Io) be a correspondence from C to Ci, which is lower semicontinuous

and convex-valued. Then, there exists c∗ = (c∗i )i ∈ C such that, for every i ∈ I0 [either c∗i ∈ Φi(c∗) or
Φi(c∗) = ∅].
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We apply Theorem 3 to the sets Io = {0} ∪ I, C0 = Π, Ci = Xr
i × Zr

i (i ∈ I), and to the correspondences Φi

(i ∈ Io) defined above. We check that the assumptions of Theorem 3 are fulfilled. The set Π is convex since
the set clQ(p) ∩ ZF is convex and does not depend on p (by Assumption F0 and Lemma 4). Moreover Π

is obviously compact, and nonempty (since (0, 0) ∈ Π). For every i ∈ I, the set Xr
i × Zr

i is clearly compact,
convex, and nonempty (since it contains (ei, 0)). Finally, for every i ∈ Io, the correspondence Φi is lower
semicontinuous and convex-valued by Lemma 5.

It follows from Theorem 3 that there exists (p̄, q̄, x̄, z̄) ∈ Π ×
∏

i∈I(Xr
i × Zr

i ) such that for all i ∈ I, either
Φi( p̄, q̄, x̄, z̄) = ∅ or (x̄i, z̄i) ∈ Φi( p̄, q̄, x̄, z̄), and for i = 0, either Φ0( p̄, q̄, x̄, z̄) = ∅ or (p̄, q̄) ∈ Φ0( p̄, q̄, x̄, z̄).
Remark that, by construction, (p̄, q̄) < Φ0( p̄, q̄, x̄, z̄), hence Φ0( p̄, q̄, x̄, z̄) = ∅ or equivalently

p ·
∑
i∈I

(x̄i − ei) + q ·
∑
i∈I

z̄i ≤ p̄ ·
∑
i∈I

(x̄i − ei) + q̄ ·
∑
i∈I

z̄i for all (p, q) ∈ Π. (3.2)

Moreover, for every i ∈ I, (x̄i, z̄i) ∈ Brε
i ( p̄, q̄); indeed if (x̄i, z̄i) < Brε

i ( p̄, q̄), then (x̄i, z̄i) < Φi( p̄, q̄, x̄, z̄) =

Brε
i ( p̄, q̄) and Φi( p̄, q̄, x̄, z̄) , ∅ (since it contains (ei, 0)), a contradiction. Consequently, for all i ∈ I,

either B̆rε
i ( p̄, q̄) ∩

(
Pr

i (x̄) × Zr
i
)

= ∅ or (x̄i, z̄i) ∈ B̆rε
i (p̄, q̄) ∩ (Pr

i (x̄) × Zr
i ) and the second condition cannot

hold from the irreflexivity of Pr
i (by Assumption C). Thus we can conclude that

for all i ∈ I, (x̄i, z̄i) ∈ Brε
i ( p̄, q̄) and B̆rε

i ( p̄, q̄) ∩
(
Pr

i (x̄) × Zr
i
)

= ∅. (3.3)

3.3. Checking the market clearing conditions

Since the Market Clearing Condition
∑

i∈Iz̄i = 0 may not be satisfied by the portfolios z̄ = (z̄i)i, the
purpose of the next claim is to define new portfolios ¯̄zi (i ∈ I) that will satisfy the Market Clearing Condition∑

i∈I ¯̄zi = 0 and will also be admissible, i.e., ¯̄zi ∈ Ẑi ⊂ Zr
i for all i.

Claim 3.2. (a) For every i, V( p̄)z̄i ≥ vi,
∑

i∈Iz̄i ∈ −AF , and q̄ ·
∑

i∈Iz̄i = 0.

We let ¯̄zi = z̄i + ζi, for some ζi ∈ AZi ∩ {V( p̄) ≥ 0} (i ∈ I) such that
∑

i∈Iz̄i = −
∑

i∈Iζi. .

(b) Then
∑

i∈I ¯̄zi = 0, for every i, ¯̄zi ∈ Ẑi ⊂ Zr
i , q̄ · ¯̄zi = q̄ · z̄i, V(p̄)¯̄zi ≥ V( p̄)z̄i and (x̄i, ¯̄zi) ∈ Brε

i (p̄, q̄).

Proof. Part (a). First, V( p̄)z̄i ≥ vi follows from the definition of vi (in (3.1)) and (x̄i, z̄i) ∈ Brε
i ( p̄, q̄) (by

(3.3)).

Second, we show that
∑

i∈Iz̄i ∈
(
clQ(p̄) ∩ ZF

)o. If this does not hold, then there exists q′ ∈ clQ( p̄) ∩ ZF
such that q′ · (

∑
i∈Iz̄i) > 0. Without any loss of generality, we can assume that q′ ∈ BJ(0, 1). From (3.2)

(taking (p, q) ∈ Π defined by p(0) = 0, p(s) = p̄(s) for s , 0 and q = q′) we have

0 < q′ ·
∑
i∈I

z̄i ≤ p̄(0) ·
∑
i∈I

(x̄i(0) − ei(0)) + q̄ ·
∑
i∈I

z̄i. (3.4)

Since (x̄i, z̄i) ∈ Brε
i ( p̄, q̄) (by (3.3)) we deduce that

p̄(0) ·
(
x̄i(0) − ei(0)

)
+ q̄ · z̄i ≤ ε0( p̄, q̄) := 1 − ‖ p̄(0)‖ − ‖q̄‖ for all i ∈ I.
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Summing up over i we get

p̄(0) ·
∑
i∈I

(
x̄i(0) − ei(0)

)
+ q̄ ·

∑
i∈I

z̄i ≤ (1 − ‖ p̄(0)‖ − ‖q̄‖)I,

which together with the above inequality (3.4) implies that ‖p̄(0)‖ + ‖q̄‖ < 1. Hence there exists α > 1 such
that ‖αp̄(0)‖ + ‖αq̄‖ < 1 and αq̄ ∈ clQ( p̄) ∩ ZF (since the latter set is a cone). Consequently, from (3.2),
(taking (p, q) ∈ Π defined by p(0) = αp̄(0), p(s) = p̄(s) for s , 0 and q = αq̄) we deduce that:

α p̄(0) ·
∑
i∈I

(
x̄i(0) − ei(0)

)
+ αq̄ ·

∑
i∈I

z̄i ≤ p̄(0) ·
∑
i∈I

(
x̄i(0) − ei(0)

)
+ q̄ ·

∑
i∈I

z̄i.

Dividing by p̄(0) ·
∑

i∈I
(
x̄i(0) − ei(0)

)
+ q̄ ·

∑
i∈Iz̄i > 0 (by inequality (3.4)), we get α ≤ 1, which contradicts

that α > 1.

Third, we show that
∑

i∈Iz̄i ∈ −AF . From above, we have
∑

i∈Iz̄i ∈
(
clQ( p̄) ∩ ZF

)o
= −AF + (ZF )⊥ (by

Lemma 4). Thus, there exists a ∈ AF such that
∑

i∈Iz̄i + a ∈ (ZF )⊥ but
∑

i∈Iz̄i + a ∈ ZF (since a ∈ AF ⊂ ZF
and z̄i ∈ Zi ⊂ ZF for each i ∈ I). Hence

∑
i∈Iz̄i + a ∈ (ZF )⊥ ∩ ZF = {0}. Therefore,

∑
i∈Iz̄i = −a ∈ −AF .

Finally, we show that q̄·
∑

i∈Iz̄i = 0. We have q̄·
∑

i∈Iz̄i ≤ 0 since q̄ ∈ clQ( p̄)∩ZF and
∑

i∈Iz̄i ∈
(
clQ( p̄)∩ZF

)o

(from above). Taking (p, q) = ( p̄, 0) ∈ Π in (3.2) we deduce that 0 ≤ q̄ ·
∑

i∈Iz̄i. Hence, q̄ ·
∑

i∈Iz̄i = 0.

Part (b). The equality
∑

i∈I ¯̄zi = 0 is straightforward and, for all i, V( p̄)¯̄zi ≥ V( p̄)z̄i (since ¯̄zi − z̄i = ζi ∈

{V( p̄) ≥ 0}). To show that, for all i, ¯̄zi ∈ Ẑi ⊂ Zr
i , it is sufficient to prove that

(¯̄z, p̄) ∈ Kv =
{
(z1, · · · , zI , p) ∈ (

∏
i

Zi) × BL(0, 1) : ∀i, V(p)zi ≥ vi,−
∑
i∈I

zi ∈ AF
}
.

Indeed, for all i, ¯̄zi = z̄i + ζi ∈ Zi (since z̄i ∈ Zr
i ⊂ Zi and ζi ∈ AZi). Moreover, V( p̄)¯̄zi ≥ V( p̄)z̄i ≥ vi by Part

(a). Finally,
∑

i∈I ¯̄zi = 0 ∈ AF . This ends the proof that (¯̄z, p̄) ∈ Kv.

We now show that q̄ · (¯̄zi − z̄i) = q̄ · ζi = 0 for every i ∈ I. Indeed, first −q̄ · ζi ≤ 0 for every i since
q̄ ∈ clQ( p̄) ∩ ZF = −

(
AF + (ZF )⊥

)o
(by Lemma 4) and ζi ∈ AZi ∩ {V( p̄) ≥ 0} ⊂ AF . Recalling that

q̄ ·
∑

i∈Iζi = −q̄ ·
∑

i∈Iz̄i = 0 from Part (a), we deduce that q̄ · ζi = 0 for every i ∈ I.
Finally, for all i, (x̄i, ¯̄zi) ∈ Brε

i ( p̄, q̄) since (x̄i, z̄i) ∈ Brε
i ( p̄, q̄) (by 3.3)) and, from above W( p̄, q̄)z̄i ≤

W( p̄, q̄)¯̄zi.

We now show that the Market Clearing Condition holds for the commodity markets.

Claim 3.3.
∑

i∈I x̄i =
∑

i∈Iei.

Proof. We first prove that the equality holds at state s = 0. If
∑

i∈I x̄i(0) ,
∑

i∈Iei(0), we deduce from (3.2),
(taking (p, q) ∈ Π defined by p(0) =

∑
i∈I(x̄i(0) − ei(0))/‖

∑
i∈I(x̄i(0) − ei(0))‖, p(s) = p̄(s) for s , 0 and

q = 0) that
0 < ‖

∑
i∈I

(x̄i(0) − ei(0))‖ ≤ p̄(0) ·
∑
i∈I

(
x̄i(0) − ei(0)

)
+ q̄ ·

∑
i∈I

z̄i,

and in the exact same way as for inequality (3.4) in the proof of Claim 3.2 we obtain a contradiction.
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We now prove that the equality holds for all state s , 0. Suppose that, for some s , 0,
∑

i∈I x̄i(s) ,
∑

i∈Iei(s).
From (3.2), we deduce that ‖p̄(s)‖ = 1, hence εs( p̄, q̄) = 1 − ‖ p̄(s)‖ = 0, and

0 < p̄(s) ·
∑
i∈I

(
x̄i(s) − ei(s)

)
.

Since (x̄i, ¯̄zi) ∈ Brε
i ( p̄, q̄) (by Claim 3.2), and εs( p̄, q̄) = 0, we have p̄(s) ·

(
x̄i(s) − ei(s)

)
≤ Vs(p̄) · ¯̄zi for all

i ∈ I, where Vs( p̄) denotes the s-th row of the matrix V( p̄). Summing up over i, and using the fact that∑
i∈I ¯̄zi = 0 (by Claim 3.2) we get p̄(s) ·

∑
i∈I

(
x̄i(s) − ei(s)

)
≤

∑
i∈IVs( p̄) · ¯̄zi = 0, a contradiction with the

above strict inequality.

3.4. The list (x̄, ¯̄z, p̄, q̄) is an equilibrium of (E,F )

We prepare the proof with the following claims.

Claim 3.4. Brε
i (p̄, q̄) ∩

(
Pr

i (x̄) × Zr
i
)

= ∅.

Proof. ¿From (3.3), one has B̆rε
i (p̄, q̄) ∩

(
Pr

i (x̄) × Zr
i
)

= ∅. Since Pr
i has open values and since Brε

i ( p̄, q̄) =

clB̆rε
i ( p̄, q̄) (by Claim 3.1 since (p̄, q̄) ∈ Π), we deduce that Brε

i ( p̄, q̄) ∩
(
Pr

i (x̄) × Zr
i
)

= ∅.

Claim 3.5. ε( p̄, q̄) = 0, that is, ||p̄(0)|| + ||q̄|| = 1, and ||p̄(s)|| = 1 for every s ∈ S.

Proof. ¿From Claim 3.2, (x̄i, ¯̄zi) ∈ Brε
i ( p̄, q̄) for each i ∈ I, hence p̄ (x̄i − ei) ≤ W( p̄, q̄)¯̄zi + ε( p̄, q̄). We

now claim that the budget inequality is binding, that is

p̄ (x̄i − ei) = W( p̄, q̄)¯̄zi + ε( p̄, q̄) for all i ∈ I. (3.5)

Indeed, if it is not true then there exists s ∈ S̄ such that p̄(s) · (x̄i(s)−ei(s)) < Ws( p̄, q̄) · ¯̄zi +εs( p̄, q̄). From the
Local Nonsatiation LNS, there exists xn

i (s)→ x̄i(s) such that xn
i := (xn

i (s), x̄i(−s)) ⊂ Pr
i (x̄) for all n. Then, it

is possible to choose n large enough so that (xn
i ,

¯̄zi) ∈ Brε
i ( p̄, q̄), which together with xn

i ∈ Pr
i (x̄) contradicts

the fact that Brε
i ( p̄, q̄) ∩

(
Pr

i (x̄) × Zr
i
)

= ∅ (by Claim 3.4).

Summing up over i the equalities (3.5) and using the facts that
∑

i∈I ¯̄zi = 0 (Claim 3.2) and
∑

i∈I x̄i =
∑

i∈Iei

(Claim 3.3), we get Iε( p̄, q̄) = 0. Hence ε( p̄, q̄) = 0.

We now show that (x̄, ¯̄z, p̄, q̄) is an equilibrium of (E,F ). Since ε( p̄, q̄) = 0 (Claim 3.5) for every i,
Brε

i ( p̄, q̄) = Bi
F r ( p̄, q̄) and from Claims 3.2, 3.3, and 3.4, we deduce that (x̄, ¯̄z, p̄, q̄) is an equilibrium of

(Er,F r). To show that it is an equilibrium of (E,F ), we only have to prove that

Bi
F

(p̄, q̄) ∩ (Pi(x̄) × Zi) = ∅ for every i ∈ I.

Assume that it is not true, then for some i, there exists (xi, zi) ∈ Bi
F

( p̄, q̄) ∩ (Pi(x̄) × Zi). ¿From the choice
of of r = (r1, r2) in the definition of the truncated economy, for all i, x̄i ∈ X̂i ⊂ intBL(0, r1) (since x̄
is an attainable allocation) and ¯̄zi ∈ Ẑi ⊂ intBJ(0, r2) (by Claim 3.2). Thus, for t > 0 small enough,
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(xt
i, z

t
i) := (x̄i + t(xi − x̄i), ¯̄zi + t(zi − ¯̄zi)) ∈ Xr

i × Zr
i , hence (xt

i, z
t
i) ∈ Bi

F r ( p̄, q̄) (since (xi, zi) ∈ Bi
F

( p̄, q̄) and
(x̄i, ¯̄zi) ∈ Bi

F r ( p̄, q̄)). On the other hand, from the Local Nonsatiation Assumption LNS, for every t ∈ (0, 1],
x̄i + t(xi − x̄i) ∈ Pi(x̄). Hence (xt

i, z
t
i) ∈ Bi

F r ( p̄, q̄)∩ (Pr
i (x̄)×Zr

i ) , ∅, in contradiction with the fact it is empty
by Claim 3.4 .

4. Appendix

We modify the financial structure F by considering the reduced financial structure Fπ which has the
same payoff matrix as F and the portfolio sets πZi (i ∈ I) where π is the orthogonal projection mapping
on the orthogonal space to LF := AF ∩ −AF . We recall that ZF :=< ∪iZi >, ZFπ :=< ∪iπZi > and the
definition of Fπ can be summarized by

Fπ =
(
V(p), (πZi)i

)
,

where π = proj(LF )⊥ , LF := AF ∩ −AF , and AF :=
∑
i∈I

(AZi ∩ {V(p) ≥ 0}) ⊂ ZF ,

In the following, we will use extensively the following properties 8 of the linear mapping π: for all (p, q, z) ∈
RL × RJ × RJ ,

q · πz = πq · z, V(p)πz = V(p)z, hence W(p, q)πz = W(p, πq)z. (4.1)

4.1. Proof of Lemma 1

We prepare the proof with two claims.

Claim 4.1. QFπ(p) ∩ Z(Fπ) ⊂ QF (p) ∩ ZF for every p ∈ RL.

Proof. We first claim that QFπ(p) ∩ Z(Fπ) ⊂ QFπ(p) ∩ Imπ ⊂ QF (p) for every p ∈ RL.

The first inclusion is a consequence of the fact that Z(Fπ) ⊂ Imπ. We prove the second inclusion by
contradiction. Assume that there is some q ∈ QFπ(p) ∩ Imπ such that q < QF (p). Then there exists i ∈ I
and ζi ∈ AZi such that W(p, q)ζi > 0. But πζi ∈ π(AZi) ⊂ A(πZi) (from Rockafellar (1970)) and by (4.1)
(since q ∈ Imπ implies q = πq), W(p, q)(πζi) = W(p, q)ζi > 0, which contradicts the fact that q ∈ QFπ(p).
This ends the proof of the two inclusions.

We end the proof of Claim 4.1 by showing that Z(Fπ) ⊂ ZF . Indeed, let y ∈ Z(Fπ), then y = πz for some
z ∈ ZF and y = πz = πz − z + z ∈ ker π + ZF ⊂ ZF since ker π = LF ⊂ ZF .

Claim 4.2.
∑

i∈I
(
πZi ∩ {V(p) ≥ vi}

)
⊂

∑
i∈I

(
Zi ∩ {V(p) ≥ vi}

)
for all v = (vi)i∈I ∈ (RS )I and all p ∈ RL.

8The first equality comes from the fact that πq · πz = πq · z, since πq ∈ Imπ and z − πz ∈ ker π = (Imπ)⊥ since π is an
orthogonal projection mapping; then by symmetry q · πz = πq · πz = πq · z. The second one holds since z − πz ∈ ker π = LF and
LF := AF ∩ −AF ⊂ {V(p) ≥ 0} ∩ −{V(p) ≥ 0} = ker V(p).
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Proof. The result is a consequence of the two following inclusions

∑
i∈I

(
πZi ∩ {V(p) ≥ vi}

)
⊂ ker π +

∑
i∈I

(
Zi ∩ {V(p) ≥ vi}

)
⊂

∑
i∈I

(
Zi ∩ {V(p) ≥ vi}

)
.

To prove the first inclusion, let y =
∑

i∈Iyi such that yi = πzi for some zi ∈ Zi and V(p)yi ≥ vi.
Then y =

∑
i∈Iyi =

∑
i∈I(πzi − zi) +

∑
i∈Izi ∈ ker π +

∑
i∈I

(
Zi ∩ {V(p) ≥ vi}

)
since πzi − zi ∈ ker π and

V(p)zi = V(p)πzi = V(p)yi ≥ vi, from the properties (4.1) of the mapping π.
To prove the second inclusion, from the definition of the asymptotic cone in the convex case it suffices

to show that ker π ⊂ A
(∑

i∈I(Zi∩{V(p) ≥ vi})
)

and that the convex set
∑

i∈I(Zi∩{V(p) ≥ vi}) is closed. From
Rockafellar (1970), if the sets Ck (k ∈ K) are polyhedral convex sets in Rn, then

∑
k∈K Ck is also a polyhedral

convex set (hence is closed) and
∑

k∈K ACk = A(
∑

k∈K Ck). Since Zi (i ∈ I) is a polyhedral convex set (by
Assumption FN1), the set Zi ∩ {V(p) ≥ vi)} is also a polyhedral convex set, hence

∑
i∈I(Zi ∩ {V(p) ≥ vi}) is

a polyhedral set and it is closed. Recalling that ker π = LF ⊂ AF , from the previously mentioned result we
get

ker π = LF ⊂ AF =
∑
i∈I

AZi ∩ {V(p) ≥ 0} =
∑
i∈I

A(Zi ∩ {V(p) ≥ vi})

= A
(∑

i∈I

(Zi ∩ {V(p) ≥ vi})
)
. (4.2)

We are now ready to give the proof of Lemma 1.

0. Fπ satisfies F0. The financial structure F satisfies F0, that is, the set AF :=
∑

i∈I(AZi∩{V(p) ≥ 0}) does
not depend on p. Clearly, Fπ will also satisfy F0 if we show that AFπ :=

∑
i∈I(AπZi∩{V(p) ≥ 0}) = π(AF ).

We recall that, for all i, AπZi = πAZi since Zi is a polyhedral convex set (see Rockafellar (1970)). To
prove the first inclusion, let y ∈ AFπ , then y =

∑
i∈Iyi for some yi such that yi = πzi for some zi ∈ AZi and

V(p)yi ≥ 0. But V(p)zi = V(p)πzi = V(p)yi ≥ 0 by (4.1), hence y ∈ π(AF ). Conversely, let y ∈ π(AF ), then
y = π(

∑
i∈Izi) for some zi ∈ AZi ∩ {V(p) ≥ 0}). But πzi ∈ πAZi = AπZi and V(p)πzi = V(p)zi ≥ 0 from the

properties (4.1) of the mapping π. Thus y =
∑

i∈Iπzi ∈ AFπ .

1. Fπ satisfies F1 and FN1. Indeed, πZi is a polyhedral convex set, since Zi is a polyhedral convex set and
π is linear (see for example Rockafellar (1970)) and πZi contains 0 since Zi contains 0.

2. Fπ satisfies F2. Let q ∈ clQFπ(p) ∩ Z(Fπ)\{0} and recall that clQFπ(p) ∩ Z(Fπ)\{0} ⊂ clQF (p) ∩ ZF \{0}
by Claim 4.1. Since F satisfies F2, for all i ∈ I, there exists zi ∈ Zi such that q · zi < 0. But πzi ∈ πZi and
q · πzi = q · zi < 0 (from the properties (4.1) of the mapping π since q ∈ Z(Fπ) ⊂ Imπ), thus Fπ satisfies F2.

3. Fπ satisfies F3. Taking vi = 0 for every i in Claim 4.2, and in (4.2), we deduce that

AFπ = A
(∑

i∈I

(
πZi ∩ {V(p) ≥ 0}

))
⊂ A

(∑
i∈I

(
Zi ∩ {V(p) ≥ 0}

))
= AF .

Consequently, LFπ ⊂ LF . Moreover, LFπ ⊂ AFπ ⊂
∑

i∈I
(
πZi ∩ {V(p) ≥ 0}

)
⊂ Imπ and LF = ker π (from

the definition of the mapping π). Consequently LFπ ⊂ LF ∩ Imπ = ker π ∩ Imπ = {0}. This ends the proof
of Lemma 1.
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4.2. Proof of Lemma 2

Let (p̄, q̄, x̄, z̄) be an equilibrium of the economy (E,Fπ). We first claim that there exists z∗i ∈ Zi (i ∈ I)
such that V( p̄)z∗i = V( p̄)z̄i for all i and

∑
z∗i = 0. Indeed, by Claim 4.2, taking vi := V( p̄)z̄i for all i, one gets

0 =
∑
i∈I

z̄i ∈
∑
i∈I

(
πZi ∩ {V( p̄) ≥ V(p)z̄i}

)
⊂

∑
i∈I

(
Zi ∩ {V(p̄) ≥ V( p̄)z̄i}

)
.

Hence 0 =
∑

i∈Iz∗i for some z∗i ∈ Zi such that V( p̄)z∗i ≥ V(p̄)z̄i for every i. But
∑

i∈IV( p̄)(z∗i − z̄i) = 0 since∑
i∈I(z∗i − z̄i) = 0 and we conclude that V( p̄)(z∗i − z̄i) = 0 for every i. This ends the proof of the claim.

We will show that (p̄, πq̄, x̄, z∗) is an equilibrium of (E,F ). We first prove that (x̄i, z∗i ) ∈ Bi
F

( p̄, πq̄) for
all i. Since (x̄i, z̄i) ∈ Bi

Fπ
( p̄, q̄) it suffices to show that, for all i, z∗i ∈ Zi and W( p̄, πq̄)z∗i = W( p̄, q̄)z̄i. In

view of the previous claim, V( p̄)z∗i = V( p̄)z̄i for all i and it only remains to show that πq̄ · z∗i = q̄ · z̄i for
all i. But, with the Market Clearing Condition

∑
z∗i = 0 proved in the above claim, it suffices to show

that πq̄ · z∗i ≥ q̄ · z̄i for all i. Indeed, suppose that for some i one has −πq̄ · z∗i > −q̄ · z̄i. But this implies
that W( p̄, q̄)πz∗i > W( p̄, q̄)z̄i, with πz∗i ∈ πZi; indeed, from above and the properties (4.1) of the mapping
π, one has −q̄ · πz∗i = −πq̄ · z∗i > −q̄ · z̄i and V( p̄)πz∗i = V( p̄)z∗i = V( p̄)z̄i. In other words, the i−th agent
has an arbitrage opportunity in the financial economy (E,Fπ), which is impossible when (p̄, q̄, x̄, z̄) is an
equilibrium of (E,Fπ) under Assumption C (see, for example, Angeloni and Cornet (2006)).

We end the proof by showing that Bi
F

( p̄, πq̄)∩[Pi(x̄)×Zi] = ∅ for all i ∈ I. Suppose that for some i there
exists (xi, zi) ∈ Bi

F
( p̄, πq̄) ∩ [Pi(x̄) × Zi]. We then deduce that (xi, πzi) ∈ Bi

Fπ
( p̄, q̄) since (xi, zi) ∈ Bi

F
( p̄, πq̄)

and W(p̄, πq̄)zi = W( p̄, q̄)πzi, from the properties (4.1) of the mapping π. But (xi, πzi) ∈ Bi
Fπ

( p̄, q̄), together
with (xi, πzi) ∈ Pi(x̄) × πZi contradicts the fact that (p̄, q̄, x̄, z̄) is an equilibrium of (E,Fπ).

4.3. Proof of Lemma 3

We prepare the proof of Lemma 3 with two claims. We let S `(0, 1) := {y ∈ R` : ||y|| = 1} and for every
s ∈ S

Ps := {p(s) ∈ R` : ∃i ∈ I, ∃x ∈ A(E),∀x′i(s), [(x′i(s), xi(−s)) ∈ Pi(x)⇒ p(s)·x′i(s) ≥ p(s)·xi(s) ≥ p(s)·ei(s)]}.

Claim 4.3. The set P := Πs∈SPs is closed.

Proof. For every s ∈ S , let (pn(s))n be a sequence in Ps such that pn(s) → p(s). For every n ∈ N,
the property defining Ps is satisfied for some agent ins ∈ I. Since there is a finite number of agents, by
eventually considering a subsequence, we can assume there exists some agent is ∈ I (independent of n),
say is = 1, such that, for all n, there exists xn ∈ A(E) and (x′1(s), xn(−s)) ∈ P1(xn) implies pn(s) · x′1(s) ≥
pn(s) · xn

1(s) ≥ pn(s) · e1(s). Since A(E) is compact (by Assumption C), without any loss of generality, we
can assume that xn → x ∈ A(E).

We show that p(s) ∈ Ps. Indeed, let i = 1, let x = limn→∞ xn as defined above, and let (x′1(s), x1(−s)) ∈
P1(x). By Assumption FN0, P1 has an open graph, hence for n large enough, (x′1(s), xn

1(−s)) ∈ P1(xn) since
(x′1(s), xn

1(−s)) → (x′1(s), x1(−s)) and xn → x. From above, we deduce that pn(s) · x′1(s) ≥ pn(s) · xn
1(s) ≥
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pn(s) · e1(s). Passing to the limit, when n → ∞, we get p(s) · x′1(s) ≥ p(s) · x1(s) ≥ p(s) · e1(s), hence
p(s) ∈ Ps.

Claim 4.4. There exists ε > 0 such that p(s) · ν ≥ ε‖p(s)‖ for all p ∈ P and all s ∈ S.

Proof. We start by proving that, for every p(s) ∈ Ps ∩ S `(0, 1), p(s) · ν > 0. Indeed, if p(s) ∈ Ps, there
exist is ∈ I, say is = 1, and x ∈ A(E) such that (x′1(s), x1(−s)) ∈ P1(x) implies p(s) · x′1(s) ≥ p(s) · x1(s) ≥
p(s) · e1(s). Since e1 ∈ intX1 (by the Survival Assumption in C) and ||p(s)|| = 1 (since p(s) ∈ S `(0, 1)), there
exists y1 ∈ X1 such that p(s)·x1(s) ≥ p(s)·e1(s) > p(s)·y1(s).But, for every t > 0,

(
x1(s)+tν, x1(−s)

)
∈ P1(x)

(from the Desirability Assumption in FN). Moreover, since P1(x) is open (by Assumption C), it is possible
to choose x′1(s) such that

(
x′1(s) + tν, x1(−s)

)
∈ P1(x) and p(s) · x1(s) > p(s) · x′1(s) 9. Since p(s) ∈ Ps we

deduce that

p(s) · [x′1(s) + tν] ≥ p(s) · x1(s), that is tp(s) · ν ≥ p(s) · x1(s) − p(s) · x′1(s) > 0.

Hence we have proved that, for every p(s) ∈ Ps ∩ S `(0, 1), there exists εp > 0 such that p(s) · ν > εp. This
implies that

Ps ∩ S `(0, 1) ⊂
⋃
{p(s) ∈ S `(0, 1) : p(s) · ν > εp}.

Since Ps is closed (by Claim 4.3) the set Ps ∩ S `(0, 1) is compact and there exist finitely many prices
p1, . . . , pr such that

Ps ∩ S `(0, 1) ⊂
r⋃

k=1

{p(s) ∈ S `(0, 1) : p(s) · ν > εpk }.

We let ε(s) := min{εp1 , . . . , εpr } and ε := min{ε(s) : s ∈ S}. Then, for every p(s) ∈ Ps\{0}, p(s)/||p(s)|| ∈ Ps

(noticing that Ps is a cone) hence (p(s)/||p(s)||) · ν > ε(s) > 0 and, for all p ∈ P and all s ∈ S, p(s) · ν ≥
ε||p(s)||.

Proof of Lemma 3. We choose ε > 0 as in Claim 4.4 and we show that every equilibrium (p̄, q̄, x̄, z̄)
of (E,F ε) such that ||p̄(s)|| = 1 for s ∈ S, is also an equilibrium of (E,F ). First we claim that p̄ ∈ P,
that is p̄(s) ∈ Ps for every s ∈ S. From the Financial Market Clearing Condition

∑
i∈Iz̄i = 0 we deduce

that Vε
s ( p̄) · (

∑
i∈Iz̄i) = 0, hence there exists is ∈ I, say i = 1, such that Vε

s ( p̄) · z̄1 ≥ 0. We prove that
p̄(s) ∈ Ps by showing that it satisfies the condition defining Ps with i = 1 and x̄ = (x̄i)i ∈ A(E). Indeed, let
x′1 := (x′1(s), x̄1(−s)) ∈ P1(x̄). First we have p̄(s) · x′1(s) ≥ p̄(s) · x̄1(s). Otherwise

p̄(s) · (x′1(s) − e1(s)) < p̄(s) · (x̄1(s) − e1(s)) ≤ Vε
s ( p̄) · z̄1.

Consequently, (x′1, z̄1) ∈ B1
F ε( p̄, q̄)∩ [P1(x̄)×Z1], which contradicts the fact that (p̄, q̄, x̄, z̄) is an equilibrium

of (E,F ε). Second we have p̄(s) · x̄1(s) ≥ p̄(s) · e1(s). Otherwise p̄(s) · (x̄1(s) − e1) < 0. Hence for t > 0
small enough

p̄(s) ·
(
(x̄1(s) + tν) − e1

)
< 0 ≤ Vε

s ( p̄) · z̄1.

9Indeed, since P1(x) is open, there exists λ ∈ (0, 1] such that λ
(
x1(s) + tν, x1(−s)

)
+ (1 − λ)

(
y1(s) + tν, x1(−s)

)
=

(
λx1(s) + (1 −

λ)y1(s) + tν, x1(−s))
)
∈ P1(x), then choose x′1(s) = λx1(s) + (1 − λ)y1(s), then one has p(s) · x′1(s) < p(s) · x1(s).
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Consequently, from the desirability assumption, we get
((

x̄1(s) + tν, x̄1(−s)
)
, z̄1

)
∈ B1

F ε( p̄, q̄) ∩ [P1(x̄) × Z1],
which contradicts the fact that (p̄, q̄, x̄, z̄) is an equilibrium in (E,F ε). This ends the proof that p̄ ∈ P.

Since p̄ ∈ P, and || p̄(s)|| = 1 for s ∈ S, we deduce that p̄(s) · ν ≥ ε||p̄(s)|| = ε, by Claim 4.4.
Consequently, Vε( p̄) = V(p̄), for every i ∈ I, Bi

F ε(p̄, q̄) = Bi
F

( p̄, q̄) and clearly ( p̄, q̄, x̄, z̄) is an equilibrium
for (E,F ).

4.4. Proof of Lemma 4

Part (a). Let p ∈ RL. The set Q(p) is obviously a cone, and we now show that it is convex by contradiction.
Suppose that there exist q1, q2 in Q(p), α ∈ (0, 1) such that αq1 + (1 − α)q2 < Q(p). Then there exists i ∈ I
and there exists ζ ∈ AZi such that W(p, αq1 + (1 − α)q2)ζ > 0. Hence

either

 −(αq1 + (1 − α)q2) · ζ > 0

V(p)ζ ≥ 0
or

 −(αq1 + (1 − α)q2) · ζ ≥ 0

V(p)ζ > 0

In the first case, we conclude that either −q1 · ζ > 0 or −q2 · ζ > 0 which, together with V(p)ζ ≥ 0, implies
that W(p, q1)ζ > 0 or W(p, q1)ζ > 0, contradicting the fact that q1 and q2 are both in Q(p). Similarly, in the
second case, we conclude that either −q1 · ζ ≥ 0 or −q2 · ζ ≥ 0 which, together with V(p)ζ > 0, contradicts
the fact that q1 and q2 are both in Q(p).

Part (b). Step 1. For every p, the set AF (p) :=
∑

i∈I(AZi ∩ {V(p) ≥ 0}) is closed. The set AF (p) is simply
denoted A hereafter. From Debreu (1959), it suffices to show that the convex cones AZi ∩ {V(p) ≥ 0} are
positively semi-independent. 10 Indeed, let ζi ∈ AZi ∩ {V(p) ≥ 0} for each i such that

∑
i∈Iζi = 0. Then

ζ1 = −
∑

i,1 ζi ∈ A ∩ −A = {0} by Assumption F3. Hence ζ1 = 0 and similarly, ζi = 0 for every i.

Step 2. −int(Ao) ⊂ Q(p). Suppose there exists q ∈ −int(Ao) and q < Q(p). Then there exist i ∈ I and
ζ ∈ AZi such that W(p, q)ζ > 0. Thus ζ ∈ AZi ∩ {V(p) ≥ 0} \ {0} ⊂ A\{0}. Recalling that A is a pointed
closed convex cone (by assumption F3 and Step 1), from Rockafellar (1970), we have ∅ , int(Ao) = {q ∈
RJ , q · c < 0,∀c ∈ A\{0}}. Consequently, −q · ζ < 0 since −q ∈ int(Ao) and ζ ∈ A\{0}, a contradiction with
−q · ζ ≥ 0 (since W(p, q)ζ > 0).

Step 3. −Q(p)o = A. First we prove that −Q(p)o ⊂ A. Since int(Ao) , ∅, we have Ao = cl int(Ao) (see
Rockafellar (1970)). From Step 2, one gets −Q(p)o ⊂ [int(Ao)]o = [cl int(Ao)]o = (Ao)o = A from the
Bipolar Theorem (see Rockafellar (1970)) since A is a closed convex cone (by Step 1). Second, we show
that A ⊂ −Q(p)o. Let ζ ∈ A, then ζ =

∑
i∈Iζi for some ζi ∈ AZi ∩ {V(p) ≥ 0}. Consequently, −q · ζi ≤ 0 for

every q ∈ Q(p) by definition of arbitrage-free prices. Hence ζ =
∑

i∈Iζi ∈ −Q(p)o.

Step 4. The set −A + (ZF )⊥ is closed. Indeed, it suffices to show that the closed convex cones −A (which
is closed by Step1) and (ZF )⊥ (a vector space, hence closed) are positively independent. This is clearly the
case since −A ⊂ ZF .

10A finite collection {Ci, i ∈ I} of nonempty convex cones in Rn is positively semi-independent if ci ∈ Ci, for all i ∈ I and∑
i∈Ici = 0, imply that for all i ∈ I, ci = 0.
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Step 5. We are ready to conclude. First we note that for two closed convex cones M and N of RJ , one has
(M ∩ N)o = cl(Mo + No), hence from the above steps one gets(

clQ(p) ∩ ZF
)o

= cl
(
(clQ(p))o + Zo

F

)
= cl

(
Q(p)o + (ZF )⊥

)
= cl

(
−A + (ZF )⊥

)
= −A + (ZF )⊥.

Part (c). Assume Kv is not bounded. Then there exist sequences (pn)n ⊂ BL(0, 1), (zn
i )n ⊂ Zi (i ∈ I)

such that for all n and all i, V(pn)zn
i ≥ vi, −

∑
i∈Izn

i ∈ AF , and
∑

i∈I||zn
i || −→n→∞

+∞. Passing to a subsequence
if necessary, we can assume that (pn)n converges to some p ∈ BL(0, 1) and that, for each i, the bounded
sequence (zn

i /
∑

k∈I||zn
k ||)n converges to some ζi. The vector ζi belongs to AZi since zn

i ∈ Zi for every n
and 1/

∑
k∈I||zn

k || −→n→∞
0. Moreover, for every n, we have V(pn)(zn

i /
∑

k∈I||zn
k ||) ≥ vi/

∑
k∈I||zn

k ||. Passing to
the limit, we obtain V(p)ζi ≥ 0 (since V is continuous). Recalling that, for every n, −

∑
i∈Izn

i ∈ AF ,
we get −

∑
i∈I(zn

i /
∑

k∈I||zn
k ||) −→n→∞

−
∑

i∈Iζi ∈ AF since AF is closed by Part (b). Recalling that for each i,
ζi ∈ AZi ∩ {V(p) ≥ 0} ⊂ AF we conclude that

∑
i∈Iζi ∈ AF ∩ −AF = {0} (by Assumption F3). Hence

ζi ∈ AF for each i and
∑

i∈Iζi = 0, which implies that ζ1 = −
∑

i,1 ζi ∈ AF ∩ −AF = {0}, and similarly
ζi = 0 for every i. But zn

i /
∑

k∈I||zn
k || −→n→∞

ζi, hence 1 =
∑

i∈I
||zn

i ||∑
k∈I ||zn

k ||
−→
n→∞

∑
i∈I||ζi|| = 0, a contradiction.

4.5. Proof of Lemma 5

First, we claim that, for all i ∈ I, the correspondence Brε
i from Π to Xr

i × Zr
i is lower semicontinuous,

has a closed graph, and has closed convex values. Indeed, from Claim 3.1, Brε
i is the closure of B̆rε

i on Π.
We then notice that B̆rε

i has an open graph, hence is lower semicontinuous. Consequently, Brε
i , which is the

closure of a lower semicontinuous correspondence, is lower semicontinuous. The fact that Brε
i has a closed

graph and closed convex values is immediate.

The correspondence Φ0 has clearly an open graph thus it is lower semicontinuous and one easily checks
that it has convex values. Let i , 0, ( p̄, q̄, x̄, z̄) ∈ Π ×

∏
k∈I Xr

k × Zr
k, and let V be an open set in Xr

i × Zr
i such

that Φi( p̄, q̄, x̄, z̄) ∩ V , ∅. We distinguish two cases:

1. (x̄i, z̄i) < Brε
i ( p̄, q̄). Then ( p̄, q̄, x̄i, z̄i) < G(Brε

i ) and since Brε
i has a closed graph there exists an open

neighborhood W of ( p̄, q̄, x̄i, z̄i) in Π × (Xr
i × Zr

i ) such that W ∩G(Brε
i ) = ∅. On the other hand, V is open in

Xr
i × Zr

i and satisfies Brε
i ( p̄, q̄) ∩ V , ∅ (because Φi( p̄, q̄, x̄, z̄) ∩ V , ∅ and Φi( p̄, q̄, x̄, z̄) ⊂ Brε

i ( p̄, q̄)). Since
Brε

i is lower semicontinuous we conclude that there exists an open neighborhood O of ( p̄, q̄) in Π such that
for every (p, q) ∈ O, Brε

i (p, q) ∩ V , ∅. Then U := [W × (
∏

k,i Xr
k × Zr

k)] ∩ [O × (
∏

k Xr
k × Zr

k)] is an open
neighborhood of (p̄, q̄, x̄, z̄) and for every (p, q, x, z) ∈ U one has (p, q, xi, zi) ∈ W ∩ [O × (Xr

i × Zr
i )], hence

Φi(p, q, x, z) ∩ V = Brε
i (p, q) ∩ V , ∅.

2. (x̄i, z̄i) ∈ Brε
i ( p̄, q̄). Note that B̆rε

i ∩ (Pr
i ×Zr

i ) is lower semicontinuous since B̆rε
i has an open graph and

Pr
i × Zr

i is lower semicontinuous. Since B̆rε
i ( p̄, q̄) ∩ (Pr

i (x̄) × Zr
i ) ∩ V = Φi( p̄, q̄, x̄, z̄) ∩ V , ∅, we conclude

that there exists an open neighborhood T of (p̄, q̄, x̄, z̄) in Π×
∏

k∈I Xr
k ×Zr

k such that for every (p, q, x, z) ∈ T
one has B̆rε

i (p, q) ∩ (Pr
i (x) × Zr

i ) ∩ V , ∅. Consequently, Brε
i (p, q) ∩ V , ∅ (because B̆rε

i (p, q) ⊂ Brε
i (p, q))

and Φi(p, q, x, z) ∩ V , ∅ for every (p, q, x, z) ∈ T . This ends the proof of the lower semicontinuity of Φi.
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The convexity of the values of Φi is a consequence of the convexity of B̆rε
i (p, q), Brε

i (p, q), Zr
i and the

convexity of the values of Pr
i , by assumptions C and F1.
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