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Abstract:  Grandmont (1985) found that the parameter space of the most classical dynamic 

general-equilibrium macroeconomic models are stratified into an infinite number of subsets supporting 
an infinite number of different kinds of dynamics, from monotonic stability at one extreme to chaos at 
the other extreme, and with all forms of multiperiodic dynamics between.     

But Grandmont provided his result with a model in which all policies are Ricardian 
equivalent, no frictions exist, employment is always full, competition is perfect, and all solutions are 
Pareto optimal.  Hence he was not able to reach conclusions about the policy relevance of his dramatic 
discovery.   As a result, Barnett and He (1999, 2001, 2002) investigated a Keynesian structural model, 
and found results supporting Grandmont’s conclusions within the parameter space of the Bergstrom-
Wymer continuous-time dynamic macroeconometric model of the UK economy.  That prototypical 
Keynesian model was produced from a system of second order differential equations.  The model 
contains frictions through adjustment lags, displays reasonable dynamics fitting the UK economy’s 
data, and is clearly policy relevant.  In addition, initial results by Barnett and Duzhak (2006) indicate 
the possible existence of Hopf bifurcation within the parameter space of recent New Keynesian models.   

Lucas-critique criticism of Keynesian structural models has motivated development of Euler 
equations models having policy-invariant deep parameters, which are invariant to policy rule changes.  
Hence, we continue the investigation of policy-relevant bifurcation by searching the parameter space of 
the best known of the Euler equations general-equilibrium macroeconometric models:  the Leeper and 
Sims (1994) model.  We find the existence of singularity bifurcation boundaries within the parameter 
space.  Although never before found in an economic model, our explanation of the relevant theory 
reveals that singularity bifurcation may be a common property of Euler equations models.  These 
results further confirm Grandmont’s views.   

Beginning with Grandmont’s findings with a classical model, we continue to follow the path 
from the Bergstrom-Wymer policy-relevant Keynesian model, to New Keynesian models, and now to 
Euler equations macroeconomic models having deep parameters.  

Grandmont was right.   
 

Keywords:  
Bifurcation, inference, dynamic general equilibrium, Pareto optimality, Hopf bifurcation, Euler 

equations, Leeper and Sims model, singularity bifurcation, stability. 
 
JEL Codes: 
 C14, C22, E37, E32. 

� 
1 We have benefited from the comments of Huabin He at Nanchang University. 

 1



 
 
1.  Introduction 
 
 1.1.  The History 
 

Grandmont (1985) found that the parameter space of even the simplest, 

classical general-equilibrium macroeconomic models are stratified into bifurcation 

regions.  This result changed the prior common view that different kinds of economic 

dynamics can only be produced by different kinds of structures. But he provided that 

result with a model in which all policies are Ricardian equivalent, no frictions exist, 

employment is always full, competition is perfect, and all solutions are Pareto 

optimal.  Hence he was not able to reach conclusions about the policy relevance of his 

dramatic discovery.  Years of controversy followed, as evidenced by papers appearing 

in Barnett, Deissenberg, and Feichtinger (2004) and Barnett, Geweke, and Shell 

(2005).  The econometric implications of Grandmont’s findings are particularly 

important, if bifurcation boundaries cross the confidence regions surrounding 

parameter estimates in policy-relevant models.  Stratification of a confidence region 

into bifurcated subsets seriously damages robustness of dynamical inferences. 

The dramatic transformation of views precipitated by Grandmont’s paper was 

criticized for lack of policy relevance.  As a result, Barnett and He (1999, 2001, 2002) 

investigated a continuous-time traditional Keynesian structural model, and found 

results supporting Grandmont’s conclusions.  Barnett and He found transcritical, 

codimension-two, and Hopf bifurcation boundaries within the parameter space of the 

Bergstrom-Wymer continuous-time dynamic macroeconometric model of the UK 

economy.  That highly regarded Keynesian model was produced from a system of 

second order differential equations.  The model contains frictions through adjustment 

lags, displays reasonable dynamics fitting the UK economy’s data, and is clearly 

policy relevant.  See Bergstrom and Wymer (1976), Bergstrom (1996), Bergstrom, 

Nowman, and Wandasiewicz (1994), Bergstrom, Nowman, and Wymer (1992), and 

Bergstrom and Nowman (2006).  Barnett and He found that bifurcation boundaries 

cross confidence regions of parameter estimates in that model, such that both stability 

and instability are possible within the confidence regions.   

Barnett and Duzhak (2006) have begun to explore bifurcation within the more 

recent class of New Keynesian models.  They studied forward-looking and current-

looking models, as well as hybrid models having both forward and current-looking 
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features.  They find the possibility of Hopf bifurcation, with the setting of the policy 

parameters influencing the existence and location of the bifurcation boundary.   No 

other form of bifurcation is possible within the three-equations log-linearized New 

Keynesian models that they consider.  One surprising result from their proofs is the 

finding that a common setting of a parameter in the future-looking New-Keynesian 

model can put the model directly onto a Hopf bifurcation boundary. 

The Lucas critique has motivated development of Euler equations general-

equilibrium macroeconomic models.  Hence, we continue the investigation of policy 

relevant bifurcation by searching the parameter space of the best known of the policy 

relevant Euler-equations macroeconometric models:  the Leeper and Sims (1994) 

model.  The results further confirm Grandmont’s views, but with the finding of an 

unexpected form of bifurcation:  singularity bifurcation.  Although known in 

engineering and mathematics, singularity bifurcation has not previously been 

encountered in economics.  Barnett and He (2004, 2006) have made clear the 

mathematical nature of singularity bifurcation and why it is likely to be common in 

the class of modern Euler equation models rendered important by the Lucas critique.    

Leeper and Sims’ model consists of differential equations with a set of 

algebraic constraints.  Our analysis reveals the existence of a singularity bifurcation 

boundary within a small neighborhood of the estimated parameter values.  When the 

parameter values approach the singularity boundary, one eigenvalue of the linearized 

part of the model moves rapidly to infinity, while other eigenvalues remain bounded.  

This phenomenon implies nearly instantaneous response of some variables to changes 

in other variables. On the singularity boundary, the number of differential equations 

will decrease, while the number of algebraic constraints will increase.  Such change in 

the order of dynamics has not previously been found with macroeconometric models.  

But we find from the relevant theory that singularity bifurcation may be a common 

property of Euler equations models. 

 Beginning with Grandmont’s findings with a classical model, we continue to 

follow the path from the Bergstrom-Wymer policy-relevant Keynesian model, to New 

Keynesian macroeconometric models, and now to Euler equations models having 

deep parameters.  At this stage of our research, we believe that Grandmont’s 

conclusions appear to hold for all categories of dynamic macroeconomic models, 

from the oldest to the newest.    

 1.2  The Leeper and Sims Model 
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 There is growing interest in rigorous analysis of macroeconomics through the 

study of mathematical models.  For this purpose, various dynamic macroeconometric 

general-equilibrium models have been established in the literature.2  Of particular 

importance is the Leeper and Sims (1994) Euler equations stochastic-dynamic 

general-equilibrium model intended to address such issues as the Lucas critique 

(Lucas (1976)).  Similar models are developed in Kim (2000).   

 The dimension of the state space in the Leeper and Sims model is substantially 

lower than in the Bergstrom, Norman, and Wymer UK model. However, the 

dimension is still too high for complete analysis by generally available analytical 

approaches.  By numerical methods complementing theoretical analysis, we find that 

the dynamics of the Leeper and Sims model is complicated by its inclusion, not only 

of differential equations, but also of algebraic constraints; and by the model’s lack of 

existence of closed form solutions. 

 In this paper, we are interested in how the dynamic behavior of the model is 

affected by its parameter settings.  We find that the order of the dynamics of the 

Leeper and Sims model can change within a small neighborhood of the estimated 

parameter values.  In particular, one eigenvalue of the linearized part of the model can 

move quickly from finite to infinite and back again to finite.  A large stable 

eigenvalue characterizes the case in which some variables can respond rapidly to 

changes of other variables, while a large unstable eigenvalue corresponds to the case 

in which rapid diversion occurs of one variable from other variables.  Infinity 

eigenvalue implies existence of pure algebraic relationships among the variables.   

 The resulting change in the order of the dynamic part of the system is a 

fundamental property of Leeper and Sims model and corresponds to a class of 

bifurcations known to engineers and mathematicians as “singularity” bifurcations.  To 

our knowledge, this is the first discovery of singularity bifucation in 

� 
2 Among those models that have direct relevance to this research are the high dimension continuous 
time macroeconometric models of Bergstrom, Nowman and Wymer (1992), Bergstrom, Nowman, and 
Wandasiewicz (1994), Bergstrom and Wymer (1976), Grandmont (1998), Leeper and Sims (1994), 
Powell and Murphy (1997) and Kim (2000).  Surveys of relevant macroeconomic models are available 
in Bergstrom (1996) and in several textbooks such as Gandolfo (1996) and Medio (1992).  General 
theory of economic dynamics is provided, in Boldrin and Woodford (1990) and Gandolfo (1996).  
Various bifurcation phenomena are reported in Bala (1997), Benhabib (1979), Medio (1992), Gandolfo 
(1996), and Nishimura and Takahashi (1992).  Focused studies of stability are conducted in Grandmont 
(1998), Scarf (1960), and Nieuwenhuis and Schoonbeek (1997).  Barnett and Chen (1988) empirically 
found chaotic dynamics in economics. Bergstrom, Nowman, and Wandasiewicz (1994) investigate 
stabilization of macroeconomic models using policy control. Wymer (1997) describes several 
mathematical frameworks for the study of the structural properties of macroeconometric models. 
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macroeconometric models; but appears to be closely connected with the structure of 

Euler equations models. 

2.  The Model 

 The Leeper and Sims (1994) Euler-equations general-equilibrium model 

includes the dynamic behavior of consumers, firms, and government.  With the 

parameters of consumer and firm behavior retained as the deep parameters of tastes 

and technology, these parameters are invariant to government policy rule changes.3  

These models contain dynamic subsystems consisting of ordinary differential 

equations and algebraic constraints. Such systems are called differential/algebraic 

systems in systems theory. 

 In the Leeper and Sims model, both consumers and firms maximize their 

respective objective functions. The government provides monetary and tax policies to 

satisfy an intertemporal government budget constraint and to the pursuit of 

countercyclical policy objectives. The detailed derivation of the models is available in 

Leeper and Sims (1994).  The resulting model is summarized in this section.  

 The model contains the following 12 state variables.  

 

L = labor supply 

C* = consumption net of transactions costs 

M = consumer demand for non-interest-bearing money 

D = consumer demand for interest-bearing money  

K = capital 

Y = factor income from capital and labor, excluding interest on government debt. 

C = gross consumption 

Z = investment 

X = consumer goods aggregate price 

Q = investment goods price 

V = income velocity of money 

P = general price level 

 

 

 
� 
3 Several similar models have been developed in Kim (2000) and in Binder and Pesaran (1999). 
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 The model assumes that the consumer maximizes4

 
1 1

0 0
( (1 ) )[ ( ) )

1
t C L ]E exp( s ds dt

π π γ
β

γ

∗ − −
∞ −

−∫ ∫
−

 

subject to  

 
M D iXC QZ Y

P P
τ +

+ + + = +
D

, 

 

 XC VY Xφ∗ + = C , 

 

 K Z Kδ= − , 

 

 Y rK wL S= + + , 

 

 
PYV
M

= , 

where (0 1)π ∈ ,  and 0γ >  are parameters; 0≤ β (s)≤1 is the subjective rate of time 

preference at time s, τ  is the level of lump-sum taxes paid by the representative 

consumer; i  is the nominal rate of return earned on government bonds;  is the sum 

of dividends received by the representative consumer, w is the wage rate; ϕ >0 is the 

transaction cost per unit of VY; δ≥0 is the rate of depreciation of capital; and r = 

rental rate of return on capital.

S

5  As we shall see below, parameters in this stochastic 

dynamic general-equilibrium model are not necessarily assumed to be constant or 

deterministic. 

 The firms’ optimization problem is  

 1 1{ ( ) ( ) (( ) ) }max X C g QI A K L rK wL C g Iσ σ σ μ μ μα θ∗ /+ + + + − − − + + ∗ / , 

where g  is the level of government purchases.  The following are parameters:  A>0, 

α>0, θ>0, μ≥0, and 0 σ 1.  Investment goods produced by the firm ,≤ ≤ I ∗ , include 

both those bought by the existing population, Z, and those purchased by the 

� 
4 Leeper and Sims describe the model’s consumer as a “representative consumer” maximizing utility 
subject to constraints in total consumption of goods and leisure.  This convention is unusual, since in 
aggregation theory, Gorman’s  representative consumer makes decisions in per capita variables, not 
totals.  But as used empirically by Leeper and Sims, the resulting Euler equations are equivalent to 
those that would have resulted from a per capita decision for the representative consumer.   
5 Transactions are assumed by Leeper and Sims to be proportional to V and Y, with ϕ being the 
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government for distribution to the newborn. Thus, a market-clearing condition is 

I Z nK∗ = + , where n = the fraction of existing capital purchased by the government 

for distribution to the newborn.6

 In this model, the state variables satisfy the following differential equations: 

 
1 ( ) iDM D Y XC QZ
P P

τ+ = − − + + , (1) 

 

 K Z Kδ= − , (2) 

 

 (1 (1 )) (1 )(1 ) (1 ) log( )
1 1

L X P CC i
C L X P

ππ γ γ π β π γ
π

∗ ∗

∗− − + − − + + = − + + −
L− −

, (3) 

 (1 2 )P Q ri
P Q Q

δ φ+ = + − − V , (4) 

where equation (1) represents the consumers’ budget constraint, (2) is the law of 

motion for capital, and (3)and (4) are first-order conditions from the consumers’ 

optimization decision.   

 In addition to satisfying the four dynamic equations, the state variables satisfy 

the following algebraic constraints:  

 
1YX

C g

μ−
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
, (5) 

 

 
1YQ

Z nK

μ
θ

−
⎛ ⎞= ⎜ ⎟+⎝ ⎠

, (6) 

 
 

 
1Yr A

K

σ
σα

−
⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (7) 

 

 
1Yw A

L

σ
σ

−
⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (8) 

 
 XC VY Xφ∗ + = C

                                                                                                                                           

, (9) 
 

 
proportionality constant.  The overdot is used throughout to designate time derivative. 
6 We are using Leeper and Sims’ definitions, which we ourselves are not advocating.  Another view 
could equate n with population growth rate so that nK could be interpreted to include capital endowed 
to the young generation by the old. 
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 Y rK wL S= + + , (10) 
 

 PYV
M

= , (11) 

 
 ( ) ( )X C g Q Z nK Y+ + + = , (12) 
 

 1(1 2 )
1

wV C
X L

πφ
π

∗−
− =

−
, (13) 

 
 2i Vφ= . (14) 
 
 The relations (5)-(8) are obtained from the first-order conditions by 

maximizing the firms’ objective function. Equation (9) defines consumption net of 

transactions costs, with total output serving as a measure of the level of transactions at 

a given point in time.  Equation (10) defines income.  Equation (11) is the income 

velocity of money.  Equation (12) is the social resources constraint.  Equations (13)-

(14) are obtained from the first-order conditions for the consumers’ decision.  

 The control variables are the government policy variables, consisting of the 

nominal rate of return on government bonds, i, and the level of lump-sum taxes, τ.  

Leeper and Sims (1994) introduced the following monetary and tax policies into the 

model.  The monetary policy rule is  

 log( ) log( ) log( )p int i L
i P P i La a a a
i P P L iεβ
= + + + + , (15) 

and the tax policy is  

 log( )L inf x
d L P Db b b b
dt C C C L P PY PY

D
τ τ

τ τ τ ε⎛ ⎞⎛ ⎞= − + + + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (16) 

The overscored variables denote steady state values, so that D Y/  is the steady state 

debt-to-income level, where income is measured by Leeper and Sims as GNP.  The 

free parameters are D Y/ , the steady state price level, P , the a ’s, and the b ’s.  The 

disturbance noises are iε  and τε .  

 In this model, it is conventional to use c Cτ τ= / , rather than τ , as a control. 

Therefore, the control variables are i  and cτ .  The parameters and exogenous 

variables, , , n g π , δ , θ , α , A , and φ , are specified by Leeper and Sims to follow 

logarithmic first-order autoregressive (AR) processes in continuous time, whileβ  is 
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specified to be a logarithmic first-order AR in unlogged form.  However, we analyze 

the structural properties of (1)-(14) without external disturbances.  As a result, in 

equation (3), we set 0π =  and treat π  as a fixed parameter, along with the model’s 

other parameters, that are all treated as fixed.  We treat the exogenous variables as 

realized at their measured values.  The extension of our analysis to the case of 

stochastic bifurcation is a subject for future research.  

 The original form (1)-(14) has 12 state variables and 14 equations.  For 

analytical investigation, it is best to have as few state variables as possible.  For this 

purpose, we next reduce the dimension of the problem by temporarily eliminating 

some state variables.  We contract to the following 7 state variables  

 

D
P
C
L
K
Z
Y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x . (17) 

The remaining state variables can be written as unique functions of x.  

 By eliminating M C V Q X∗, , , ,  from the independent state variables, we can 

determine directly from (1)-(14) that x satisfies the following equations.  

 
1 ( )Y iD P
P P

φ
φ

/ i Y+ + /  

 
1 1

22
c

Y iiD Y YY C L C
P C g Z nK V

i
μ μ φ

θ τ
φ

− −⎛ ⎞ /⎛ ⎞= + − − − +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠
, (18) 

 
  

 1
1 (1 )( ) 1(1 (1 ))( )

( )
VY C g C

C gC VY C g

μ μ

μ μ
φ μ μπ γ

φ

−

−
− − + −

− − −
+− +

 

 
1 1

1
(1 (1 )) ( ) 1 (1 )(1 )( )

1( )
V Y C g PY L

Y P LC VY C g

μ μ

μ μ
π γ φ μ μ γ π

φ

− −

−
− − + − − −

− + +
−− +

+  

 
1

1

( ) 1
( ) 2

Y C gi
C VY C g i

μ μ

μ μβ
φ

i
φ

−

−

+
= − +

− +
, (19) 

 

 1 1(1 )( ) (1 2 ) ( )P Y Z nK aV Y Z nK K i
P Y Z nK

σ
μ σ μ σαμ φ δ

θ
− − −+

+ − − = − − + + +
+

, (20) 
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 K Z Kδ= − , (21) 
 
 0 ( ) ( )C g Z nK Yμ μ μθ= + + + − , (22) 
 
 0 K L a Yσ σ σα σ− −= + − , (23) 
 

 
1

1
1
( ) 1 10 (1 2 ) ( )

1 1
a Y C g V CV Y C g

L LL

σ μ σ μ
μ μ

σ
π φ πφ

π π

− −
−

−
+ − −

= − + + −
− −

. (24) 

 
 
 For the ease of notation, we denote equations (18)-(24) as  

 

 ( ) ( ), = ,h x u x f x u , (25) 

 ( )= ,0 g x u , (26) 

 
where x is the state vector, u is the vector of controls, h(x,u) is a matrix having 

dimension ,  and f(x,u) is a 44 7× 1×  vector.  The dimension of the matrix g(x,u) is 

.  Equation (25) describes the nonlinear dynamical behavior of the model, and 

(26) represents the algebraic constraints, which are nonlinear.  Many systems can be 

described in the form of (25) and (26).  Models in that form are called nonlinear 

descriptor systems in the mathematical literature on nonlinear dynamics.

3 7×

7   

 We shall use , , , and l  (with m 1m 2m 1m m m2= + ),  to denote respectively 

the dimension of x, the number of differential equations in (25), the number of 

algebraic constraints in (26), and the dimension of the vector of control variables, u.  

With the Leeper and Sims model, 7m = , 1 4m = , 2 3m = , and 2l = .  

 The steady state of (25)-(26) can be solved from the following equations:  

 

 ( )= ,0 f x u , (27) 

 ( )= ,0 g x u . (28) 

 

We denote the steady states of x and u by x  and u , respectively. The vector, u , is the 

solution of (25) and (26) in the steady state, when external stochastic disturbances are 

zero.  Hence,   

� 
7 The model developed in Kim (2000) is also in that form. 
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,

0,

.c

i

i

C

β

τ
τ

=

=

=

 (29) 

The values x  and u  are solutions to (27)-(28), and (29). The resulting steady state is 

the equilibrium of (25)-(26), when the control variables are set at their steady state.  

 The vector of parameters in the steady state system is  

 [ ]aπ β θ α φ δ μ γ σ ′= ,p  

 
where the prime denotes transpose.  Leeper and Sims (1994) estimate the parameters 

with quarterly data from 1959 to 1992.  Although g is not a parameter of tastes or 

technology, it is taken as a fixed value by the private sector at its setting by the 

government.  

 The constraints on the parameter values and g are:  

 

 0 1π< < , 0γ > , 0 1σ≤ ≤ , 1μ ≥ , 0δ ≥ , 0 1β≤ ≤ , 0δ >  .   (30) 0g ≥

 

3.  Singularity Bifurcation in the Leeper and Sims Model 

 We explore the structural properties of the Leeper and Sims model in a small 

neighborhood of the steady state, ( ),x u , by using local linearization around the 

steady state. The linearized version of the system, (25) - (26), is  

 

 1 1 1= +E x A x B u  (31) 

 2 2= +0 A x B u  (32) 

where  

 11 ( ) m m×= , ∈E h x u ,  

 1 21 2
( ) ( )m m m m× ×

= , = = , =
∂ , ∂ ,

= | ∈ , = | ∈
∂ ∂x x u u x x u u

f x u g x uA A
x x

, 

 1 21 2
( ) ( )m m m m× ×

= , = = , =
∂ , ∂ ,

= | ∈ , = | ∈
∂ ∂x x u u x x u u

f x u g x uB B
u u

. 

 
The linearized system, (31)-(32), is solvable if it is regular.  Using the relevant 

regularity condition from Gantmacher (1974), we have the following solvability 
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condition, which must hold for some values of the determinant’s parameter, s: 

 1 1

2
det( ) 0

s −⎡ ⎤
≡ ./⎢ ⎥−⎣ ⎦

E A
A

 

If that regularity condition is violated for all s, the linearized system either has 

multiple solutions or no solution. We randomly chose parameter values within the 

theoretically feasible region and observed that the Leeper and Sims model, as 

expected, is regular.  

 To study the structural properties of the Leeper and Sims model, we further 

transform the linearized system (31)-(32) into the following form.  

 

Definition 3.1 Two systems  

 = +Ex Ax Bu  (33) 

and  

  (34) = +Ey Ay Bu

are said to be restricted system equivalent (r.s.e.) if there exist two nonsingular 

matrices,  and , such that  1T 2T

 1 2 1 2 1 2= , = , = , =T ET E T AT A T B B y T x.  

 
 The form (34) can be obtained by using the coordinate transform, 2=y T x , 

and then multiplying both sides of (33) by  from the left.  The relationship of r.s.e. 

permits transforming a system into a convenient form, while preserving important 

properties.  

1T

 We next transform (31)-(32) into a suitable r.s.e. form.  First, denote  

 1( )Er rank= E . 

Then there exist nonsingular matrices  and  such that  1T 2T

 1 1 2
0

0 0
Er⎡ ⎤

= ⎢ ⎥
⎣ ⎦

I
T E T . 

Consider the following coordinate transform  

 11 1
2 1 2

2
E Er m⎡ ⎤ r−−⎢ ⎥

⎢ ⎥⎣ ⎦
= , ∈ , ∈

x
T x x x

x
. 

Then  
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 1
2

2

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=
x

x T
x

. 

Substituting that form of x into (31)-(32) and then multiplying both sides of (31) by 

, we find that (31)-(32) is r.s.e. to  1T

 
1 11 1 12 2 11

21 22 121 2

31 1 32 2 2

= + +
= + +′ ′ ′
= + +

A x A x B ux
0 x xA A B
0 A x A x B u

u  (35) 

where  

 . 11 1112
1 1 2 1 1 31 2 232

2221 12
⎡ ⎤
⎣ ⎦

⎡ ⎤ ⎡ ⎤
= , = , =⎢ ⎥ ⎢ ⎥′′ ′⎣ ⎦ ⎣ ⎦

A A B
T A T T B A A A T

AA B

 Combining the second and the third equations in (35), we have  

 1 11 1 12 2 11= + +A x A x B ux , (36) 

 21 1 22 2 12= + +0 A x A x B u , (37) 

where  

 21 12 12
21 22 12

31 31 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

′ ′ ′
= , = , =

A A BA A B
A A B

. 

 

If  is nonsingular (or invertible), it is possible to solve for  from the algebraic 

constraint equation (37). In fact, in this case, we have  

22A 2x

 . 1
2 22 21 1 12( )−= − +x A A x B u

Substituting the form of  into (36), we obtain  2x

 . 1 1
1 11 12 22 21 1 11 12 22 12( ) (− −= − + −A A A A x B A A Bx )u

Hence,  can be described by a system of ordinary differential equations and an 

algebraic relationship between  and . 

1x

1x 2x

 However, the previously described transformation would not be possible, if 

 were singular and thereby not invertible.  In fact, as explained below, the 

dynamics of (25)-(26) could be dramatically different from those of ordinary linear 

differential equations, if  were singular.  

22A

22A

 To see what could happen when  is singular, we now revisit the linearized 

system (36)-(37), which can be re-written as  

22A
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 1 11 1 1112

2 21 22 2 12

0

0 0
Er d

dt

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
= +⎢ ⎥

⎣ ⎦

I x A A x B
u

x A A x B
. (38) 

 
If the Leeper and Sims model is regular, so is the matrix pair  

 11 12

21 22
( )r ⎡ ⎤

⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
,⎢ ⎥

⎣ ⎦

A AI 0
A A0 0

, 

which is in the form of a matrix pencil.  

 For a regular matrix pencil, there exit nonsingular matrices  and  such 

that

1T 2T
8  

 , 1

2

111 12
1 21 2

21 22

0
 and 

0
Er m

m

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

I 0 I 0A A A
T TT T 0 IA AN0 0

where  and N is a nilpotent matrix.  By the definition of nilpotent matrix, 

there exists a positive integer  such that 

1 2 mm m+ =

1d >

 d =N 0 . 

The smallest such integer  is called the nilpotent index of N.  d

 The following is an example of a nilpotent matrix:  

 

0 1 0 0 0
0 0 1 0 0

0 0 0 0 1
0 0 0 0 0

...⎡ ⎤
⎢ ⎥...⎢ ⎥
⎢ ⎥= .. ...
⎢ ⎥...⎢ ⎥
⎢ ⎥...⎣ ⎦

N . (39) 

A matrix is nilpotent if and only if it is similar to the following block diagonal matrix  

 1 2( )pdiag , ,...,N N N , 

in which each  has the form of (39).iN 9  

 Consider the coordinate transform  

 1 1 1 1
2 2

2 2 2
or equivalently

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= , =
x 1

2

y y x
T Tx y y x

. 

Multiplying both sides of (38) by , we have another r.s.e. form of (31)-(32),  1T

 1 1 11= +A y B uy , (40) 

 

� 
8 See Gantmacher (1974). 
9 Two matrices, A and B, are said to be similar, if there exists an invertible matrix, T, such that  
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 , (41) 2 22 = +N y By u

where  

 111 1
1

122

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

=
BB

T BB
. 

 

 The solutions to (40) and (41) are respectively,  

 1 0
0

( )
1 1 1 1(0) ( ) ( )t t t

te e t dξ ξ ξ−= + −∫
A Ay y B u  

 

 , 
1 1( 1) ( )

2 2
1 0

( ) (0) ( )
d dk k k k

k k
t tδ

− −−

= =
= − −∑ ∑y N y N B12u

 
where  is the initial time, 0 0t ≥ ( 1)kδ − (t) is the derivative of order k-1 of the  

Dirac delta function, and  denotes the -th order derivative of u.( )ku k 10   

 Unless =N 0  or the initial state 2(0) =y 0 , there exist the impulse terms in the 

first summation in the solution for 2y , as well as the smooth derivative terms of u in 

the second summation.  In fact when =N 0 , the above solution for y2 does not apply, 

although the solution for y1 above remains valid.  This solution structure with nonzero 

N is very different from that of ordinary differential equations, such as (40) for y1.  

 The first summation in the solution for 2y could produce shock effects to the 

state response of 2y .  In fact, the Dirac delta, which is ( 1)kδ −  when k=1, is often 

called the unit impulse function.11  But if =N 0 , we have from (41) that 

 , 2 2= −y B u

which is a smooth algebraic relationship between 2y  and u. This bifurcation 

                                                                                                                                            
A = T-1BT. 
10 We use e raised to a matrix power to designate the matrix of e to the power of each element of the 
matrix power.  Regarding the form of the solutions to (40) and (41), see Cobb (1982, 1983).  The 
discrete analog of the delta function is the Kronecker delta. 
11 The Lebesgue  integral of the Dirac delta function from minus infinity to plus infinity is 1.0.  
Formally the Dirac delta, δ(t), is not a function but the limit of a sequence of functions (the nascent 
delta functions).  In that limit, the Dirac delta is a measure with unit mass at the origin and is often 
called the unit impulse function.  The antiderivative of the Dirac delta is the Heaviside (unit) step 
function, so that the Dirac delta can be viewed as the derivative of the step function.  Since the Dirac 
delta is a measure, its derivatives require careful definition.  Those derivatives are higher order 
“singularity functions” called “doublets,” “triplets,” etc.  It can be shown that the n’th derivative of δ(t) 
is δ(n) = (-1)nn! δ(t)/tn.  Note that if δ(x) is the unit impulse at t=0, then δ(n)(t) is a rescaled impulse at 
t=0. 
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phenomenon at =N 0  is consistent with the following theorem.  

 

Theorem 3.1.  If both (40)-(41) and (36)-(37) are r.s.e. forms of the same linearized 

system (31)-(32), then  

 =N 0 , 

if and only if  is nonsingular, i.e., 22A 22( ) 0det ≠ .A  

 

Proof. If , then (40)-(41) and (36)-(37) have the same form with , 

which is nonsingular.  

=N 0
222 m=A I

 Converseley, assume  is nonsingular.  Then choose  22A

 1

22

1 1 112 22 11 12 22 21 12 22
1 2

m

mm

−⎡ ⎤ −⎡ ⎤−
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

− −
= , =

I A A A A A A A A
T T 0 I0 I

. (42) 

Direct verification confirms that  

 1

2

111 12
1 2 1 2

21 22
Er m

m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤
= , =⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

I 0 0I 0 A A A
T T T T 0 IA A0 00 0

 

with  

 . 1
1 11 12 22 21

−= −A A A A A

Therefore, we have .  This completes the proof.                                � =N 0

 

 With the linearized model, (31)-(32), singularity of  results in completely 

different dynamical solution behavior.  As a result, we say a singularity bifurcation 

occurs, when  

22A

 22( )det 0=A . (43) 

The preceding condition has another form in terms of the original coefficient 

matrices, as shown in the following theorem.  

 

Theorem 3.2 Assume that  has full row rank, so that 1E

 1 1( )rank m=E . (44) 

Then  is nonsingular if and only if  22A
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 1

2

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

E
A

 

is nonsingular, so that 

 1

2
( )rank m
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=
E
A

. (45) 

 

Proof.  Denote  

 1 2
1 2

1 2
ˆ ˆ

⎡ ⎤ ⎡
= , =

⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣

T 0 T 0
T T0 T 0 T ⎦

, 

where  and  are defined as in (42). Then both  and  are non-singular.  1T 2T 1T 2T

 Consider the following matrix  

 

1 1

2

1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

E A
0 A

Λ
0 E
0 0

. 

Then we have  

 

1

1

11 1211
1 2 1 2

2 21 22
1 2

1
1 2

ˆ ˆ

m

m

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎢ ⎥= = ⎢ ⎥⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

I 0 A AAE
T T T TA0 0 0 A A

T ΛT 0 0 I 0E
0 T T0 0 0 0 0

, 

 

 21
ˆ ˆ )(rank T AT 1 22 (m rank 2 )= + A . (46) 

 
But if  has full row rank, , then 1E 11m − = m

1 1 1( )rank m m= = ,E  

and  

  

1 1

22
1

1 1
( ) ( ) ( ) ( )rank rank rank rank

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥= = +
⎢ ⎥
⎢ ⎥
⎣ ⎦

E A
A0 A

Λ E
E0 E

0 0

 1
1

2
( )m rank
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= +
E
A

. 

 Combining the previous equation with (42), we obtain  
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 . (47) 1
1 2

2
( ) (rank m rank
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= +
E

A
A 2)

2 2Note that  and 222
m m×∈A 2m m= .  Hence equation (47) says that  is 

nonsingular if and only  

22A

 1

2

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

E
A

 

is nonsingular.          � 

 

 

 Therefore, the following condition for singularity bifurcation is provided by 

Theorem 3.2: 

 1

2
det( ) 0

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=
E
A

. (48) 

Note that  is solvable from (37) alone if  is nonsingular. Therefore, singularity 

condition implies the case in which  is not readily solvable from the algebraic 

(37) alone. We need to take into account of the dynamic constraint (36).  

2x 22A

22x

 We next introduce another property to have a closer look at the singularity 

condition.  

 

Corollary 3.1.  Consider the following system  

 
1 12 1 12 1

2 22 2

+ = + +
= +

= + +
y y

E x E y A x A y B u
y A y B u

0 A x A y B u

, (49) 

where Ay is an arbitrary matrix of dimension m m× , By is an arbitrary matrix of 

dimension , and the other matrices are as defined above.  Then the singularity 

condition for (49) is the same as that for (31)-(32).  

m l×

 

Proof. According to Theorem 4.2, the singularity condition for (49) is  

 
1 12

2 22

det( ) 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=
E E
0 I

A A
. 

By eliminating the second column, that determinant condition is equivalent to (48), 
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which is the singularity condition for (31)-(32).                      � 

 

 Corollary 3.1 says that adding (or deleting) state variables that can be modeled 

by ordinary differential equations does not change the singularity condition.  This 

property is useful in reducing the dimension of the problem under consideration.  For 

example, we could drop the Leeper and Sims’ model’s state variable K  from its state 

vector, (17), in the system (31)-(32), without affecting the singularity condition.  

 By thereby dropping the state variable K , the singularity condition becomes  

 1

2
det( ) 0

⎡ ′ ⎤
=⎢ ⎥′⎣ ⎦

E
A

, (50) 

in which  

 1 23 26

1 10 0 0

1 (1 )(1 )0 0
1

1 10 0 0

Y
P PV V

e e
P L

P Z

γ π

1
nK Y
μ μ

⎡ ⎤
⎢ ⎥
⎢ ⎥

− −⎢ ⎥=′ ⎢ ⎥−
⎢ ⎥− −⎢ ⎥−
⎢ ⎥+⎣ ⎦

E  

and  

 

1 1 1

2 23 2624
1 1

0 0 ( ) 0 ( )
0 0 0

0 0 0 0

C g Z nK Y
a a a

L A

μ μ μ

σ σ

μ θμ

σ σ

− −⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Yσ

μ

− − −
⎢ ⎥⎣ ⎦

+ +
=′A , 

where  

 2
23

1 (1 ) 1[1 ( 1)( ) ]e VY C g
C gC

μ μπ γ μφ μ −
∗

− − −
= − − + −

+
, 

 

 1
26

1 (1 ) 1[ ( ) ]e VY C g
YC

μ μπ γ μφ μ −
∗

− − −
= − + + , 

 

 1
23

1 1(1 2 ) (1 )( )
1

a V A Y L C g
L

σ μ σ σ μ πφ μ
π

− − − −
= − − + −

−
, 

 

 2 1
24 2

1(1 2 ) ( 1) ( )
(1 )

Ca V A Y L C g
L

σ μ σ σ μ πφ σ
π

− − − −
= − − + −

−
, 
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 1 1 1
26 (1 2 ) ( ) ( )a V A Y L C gσ μ σ σ μφ μ σ − − − −= − − + . 

 

 Direct calculation shows that (50) is equivalent to  

 

2623

1 1 1

2623 24
1 1

1(1 )(1 )
1

( ) 0 ( )det( )
0

0 0

ee
Z nKL

C g Z nK Y
a a a

L A

μ μ μ

σ σ

μγ π

μ θμ

σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

−− − ′
+−

+ +

Yσ

μ

−

−  (51) 

where  

 1
26

1 (1 ) [ ( )VY C ge
C

μ μ ]π γ φ μ −
∗

− −
= − +′ . 

As we shall demonstrate later, singularity does occur within the theoretically feasible 

parameter regions.  

 In systems theory, bifurcation is said to occur if change of structural dynamic 

solution properties occurs, when a parameter crosses a certain value.  Such a critical 

value is called a bifurcation point.  Many types of bifurcation are know, such as 

saddle-node bifurcation, transcritical bifurcation, and Hopf bifurcation.  Bifurcation 

analysis is particularly useful in locating subsets of the parameter space supporting 

various dynamical behaviors of a system, such as existence of limit cycles, 

multiperiodic instability, monotonic stability, or damped stability.  

 We find that the Leeper and Sims model has structural changes in its 

dynamics, and the boundary determined by (51) is a singularity-induced bifurcation 

boundary.  To the best of our knowledge, this is the first time that this type of 

bifurcation has been found in a macroeconometric model.  

 Leeper and Sims (1994) proposed government policy control using the 

monetary policy (15) and the tax policy (16). To investigate bifurcation of the closed-

loop system under the control of government policies, let us expand the state variable 

to  
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 c

C

D
P
C
L
K
Z
Y
i
τ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=x . (52) 

With this new state variable, the linearized system (31)-(32) becomes  

 , (53) c1 1
c c

c=E Ax x

 2[ ] c=0 A 0 x , (54) 

where , , 11
c cm mc ×∈E 11

c cm mc ×∈A 1 1 2cm m= + , and 2cm m= + .  

4.  Numerical Results 

 In this section, we numerically locate the singularity-induced bifurcation 

boundaries.  We use the condition (51) applied to the closed-loop system (54).12   

 We first test all pairs of parameters to determine those pairs that reach 

bifurcation boundaries, when varied with all other parameters set at their point 

estimates.13 Pairs of parameters permitted to vary about their point estimates are 

allowed to take values within the intersection of their theoretically feasible ranges and 

their 95% confidence intervals of their estimated values.  In particular, the 

intersection, H,  of (30) and 

 ( ) [ ( ) , ( ) ]i ip i p i c p i cσ σ∈ − +  

where ( )p i  is the estimated value of parameter , ( )p i iσ  is the standard error of the 

estimate, and c  is the critical value of the 95th-percentile confidence interval for 

N(0,1).14   

� 
12 Regarding numerical stability, we limited our computations to the theoretical procedure mentioned 
earlier.  We did not use additional algorithms to check for numerical stability.  But since we 
encountered no stability problems with MatLab software, we had no indication of the need for 
redundant checks of numerical stability. 
13 Hyperplanes along which only two parameters vary can fail to intersect bifurcation boundaries, even 
if they exist at other settings of some parameters. 
14 For some parameters, standard errors are not provided in Leeper and Sims (1994).  In such 
unfortunate cases, we permitted parameter values to take values within 50% of the point estimates.  
Such a range of parameter values keep the parameters well within the theoretically feasible region.  
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 Figures 4.1  and 4.1 show some of the sections of the singularity-induced 

bifurcation boundary that we located.  Figure 4.1 displays 2-dimensional sections with 

the other parameters set at their point estimates, while figure 4.2 displays 3-

dimensional sections with the other parameters set at their point estimates.15  In the 

first section of figure 4.2, we display a section varying μ and g, while in the second 

section, we display μ versus β.  The range of the plots’ axes are within the H intervals 

about each parameter’s estimate.  Table 1 provides the point estimates, standard 

errors, and H intervals used in producing figures 4.1 and 4.2.16

 
Figure 4.1.  Two-dimensional sections of a singularity-induced bifurcation 

boundary. 

                                                                                                                                            
Another complication is produced by the fact that Leeper and Sims did not report covariances of 
parameter estimators.  Hence, in our three dimensional searches we do not have 3-dimensional 
confidence regions, but rather use the Cartesian products of the pairwise confidence intervals. 
15 Since the parameter space is a high dimensional space, we investigated many sections of the space 
within H.  We display only the sections that we found to be particularly informative about the location 
and nature of the singularity boundary. 
16 While β and μ are parameters, g is an exogenous variable.  What we display as “estimate” and 
“standard error” for g is the sample mean and standard deviation of g. 
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Figure 4.2. Three-dimensional sections of a singularity-induced bifurcation 

boundary. 
 

  
 

 The estimation information for the parameters μ , g , and β  used in figures 

4.1 and 4.2 are in Table 1.  All estimation information is taken directly from the 

Leeper and Sims paper.  We make no changes in their models, in their reported point 

estimates, or their reported standard errors.  Our experiments are conditional upon 

what Leeper and Sims have published, without modification. 

 

Table 1.  Estimation of μ , g , and β  
parameter estimate  standard error  H interval   

μ   1.0248  0.324  [1,1.6598]   
g   0.0773*  0.292*  [0, 0.6496]   
β   0.1645  0.288  [0, 0.7290]   

 *Since g is an exogenous variable, rather than a parameter, the “estimate” is the sample  
 mean and the “standard error” is the sample standard deviation. 

 
 To illustration what happens when parameter values cross the singularity 

boundary, consider the parameter β .  Table 2 displays the changes of finite 

eigenvalues, 1 8λ λ,..., , when β  varies.  

 

 23



Table 2.  Eignevalue changes 
β   0.080  0.120  0.160  0.165  0.170  0.200  0.240   

1λ   1.002  1.002  1.002  1.002  1.002  1.002  1.002   

2λ   0.080  0.120  0.160  0.165  0.170  0.200  0.240   

3λ   -0.303  -0.262  -0.220  -0.215  -0.210  -0.178  -0.135  

4λ   -3.558  -3.559  -3.561  -3.561  -3.561  -3.563  -3.566  

5λ   -0.098  -0.084  -0.077  -0.076  -0.075  -0.072  -0.069  

6λ   -0.002  -0.003  -0.003  -0.003  -0.003  -0.004  -0.004  

7λ   3.101  5.177  8.237  8.682  9.254  13.416  28.401  

8λ   -117.790  -204.703  -1811.413 ∞   1456.294 195.888  58.059  
note   boundary     

   

 
 The first row in Table 2 are settings of β  that we explore.  The second 

through the ninth rows are the corresponding finite eigenvalues of the linearized 

model at each setting of β . There are three more eigenvalues, which are not shown in 

the table.  Those eigenvalues are infinite.  The table shows that when the value of β  

increases and crosses the bifurcation boundary, 8λ  decreases rapidly to , spikes 

suddenly from  to , and then decreases from 

−∞

−∞ +∞ +∞ .   

 Table 2 clearly shows that the Leeper and Sims model has a structural change 

in dynamics, when β  crosses the singularity-induced bifurcation boundary.  The two 

regions separated by the boundary exhibits drastically different dynamical behaviors.  

Also note the very small range of values of μ  displayed along its axis in figures 4.1 

and 4.2.  That displayed range consists of a small subset of values within the interval 

H.  As a result, very small changes in μ  can cause bifurcation, independently of the 

settings of g or β .   

 As shown by Table 2, such singularity bifurcations can have dramatic effects.  

The number of dynamic equations and the number of algebraic equations change, 

when the singularity-induced bifurcation boundary is crossed.   

5. Conclusions 

 The Leeper and Sims Euler equations macroeconometric model is 

representative of a larger class of systems, designed to address the Lucas critique.  

The most distinguishing characteristic of this class of system is the models’ form,  
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 ( )=Ex f x , 

in which the matrix E could become singular at some settings of the parameters.  In 

this paper, we have examined the basic properties of such model, the important 

Leeper and Sims model, proposed an approach for bifurcation analysis of such 

models, and most importantly discovered the existence of singularity-induced 

bifurcations for the first time in a macroeconometric model.  

 Within a small region of the estimated parameter values, we locate and 

characterized the nature of the singularity-induced bifurcation.  The dynamic order of 

the system changes in a dramatic manner, when parameter values cross the bifurcation 

boundary.  In a theoretical survey paper of types of bifurcation, Barnett and He (2006) 

have argued that singularity bifurcation may not be unusual in Euler equations 

models; and we have, in the current paper, illustrated that theoretical speculation in a 

well known model in that class.  

 With the policy-relevant Bergstrom and Wymer Keynesian second-order 

differential-equations macroeconometric model of the UK economy, Barnett and He 

(1998,1999, 2001, 2002) found three types of bifurcation boundaries within the 

parameters’ confidence regions.  Subsequently with New Keynesian models, Barnett 

and Duzhak (2006) are finding Hopf bifurcation boundaries.  Now in the current 

paper, we have found a particularly dramatic type of bifurcation with an Euler 

equations, having deep parameters that are invariant to policy rule changes and 

thereby immune to the Lucas critique.   

 In all of these studies, the models used are highly policy relevant and were not 

modified from their influential previously-published forms.  While Grandmont’s 

model has been criticized for its lack of policy relevance, we believe from the 

accumulating evidence that Grandmont’s conclusions are correct and are highly 

relevant to policy.  In particular, these results cast into doubt the dynamical inferences 

acquired in the traditional manner, by simulating macroeconometric models at their 

parameter point estimates.  To be able to achieve robustness of dynamical inferences, 

such simulations must be made at various settings throughout the confidence region 

about the parameters’ point estimates.  
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