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Abstract

We formalize a notion of conditionally decisive powers of which the exercise depends
on social consent. Decisive powers, or the so-called libertarian rights, are examples and
much weaker forms of powers are covered by our notion. Main results provide an ax-
iomatic characterization for existence of a system of powers and its uniqueness as well
as characterizations of various families of rules represented by systems of powers. In
particular, we show that a rule satisfies monotonicity, independence, and symmetric
linkage (person i and i’s issues should be treated symmetrically to person j and j’s is-
sues for at least one linkage between issues and persons) if and only if there is a system
of powers representing the rule and that the system is unique up to a natural equiv-
alence relation. Considering a domain of simple preference relations (trichotomous or
dichotomous preferences), we show that a rule satisfies Pareto efficiency, independence,
and symmetry (the symmetric treatment condition in a model with an exogenous link-
age between issues and persons) if and only if it is represented by a “quasi-plurality
system of powers”. For the exercise of a power under a quasi-plurality system, at least
either a majority (or (n+ 1)/2) consent or a 50% (or (n− 1)/2) consent is needed.
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1 Introduction

Some sorts of individual or positional powers feature common decision rules in numerous
social or political institutions. Exercising these powers is often associated with a requirement
of obtaining sufficient social consent and the level of the sufficiency may vary across powers.
To take an example, the Constitution of United States describes powers of the President and
how much degree of social consent is required for exercising presidential powers; for instance,
‘power, by and with the advice and consent of the Senate, to make treaties, provided two
thirds of the Senators present concur’.1 The main objective of this paper is to formalize
a notion of individual powers of which the exercise depends on social consent and to give
axiomatic characterizations of some families of rules represented by a system of powers.
We consider the following extension of the model by Samet and Schmeidler (2003). There

is a society consisting of at least two members. There are a finite number of issues. The
society needs to decide on each issue either positively (acceptance) or negatively (rejection).
The social decision should reflect members’ opinions that are expressed in one of the three
ways, positively or negatively or neutrally (we also consider separately the case when opinions
are either positive or negative). The systematic relationship between social decisions and
members’ opinions are described by a (decision) rule. It is a function associating with each
list of members’ opinions, namely, a problem, a single decision.
Building on Samet and Schmeidler (2003),2 we say that person i has the power on the

kth issue if social decision on the kth issue is made according to i’s opinion when and only
when i’s opinion obtains sufficient social consent. The sufficiency means that the number of
persons with the same opinion on the kth issue as i’s is greater than or equal to a certain level,
called a consent quota.3 For example, decisive powers, or the so-called libertarian rights by
Sen (1970, 1976) and Gibbard (1974), are associated with the minimum consent quota of 1.
The above mentioned Presidential power is associated with the consent quota of 2/3 of the
number of the Senators. A system of powers is a function mapping each issue a person who
has the power on this issue and the associated consent quotas.
Our main results show that existence of a system of powers is closely related with the

following axioms for social choice. Monotonicity says that the rule should respond non-
negatively whenever the set of members with positive opinion expands and the set of mem-
bers with negative opinion shrinks. Independence says that the decision on each issue should
be based only on members’ opinions on this issue. These two axioms are also studied by Ru-
binstein and Fishburn (1986), Kasher and Rubinstein (1997), Samet and Schmeidler (2003),
and Ju (2003, 2005). We also consider a symmetry axiom, called symmetric linkage. This
axiom is motivated in an environment where issues have some connections with persons. For
example, each person has his own areas of specialty and each issue falls on an area of at
least one person. Symmetric linkage says that the rule should treat a person i and i’s areas
symmetrically to any other person j and j’s areas, under at least one linkage between issues
and persons (a function from the set of issues into the set of persons). In a specialized model

1The United States Constitution, Article II, Section 2, Clause 2.
2“Consent rules” by Samet and Schmeidler (2003) give each person the power of deciding his own quali-

fication.
3When i’s opinion is neutral, this description does not match exactly to our definition. This is because

decision on each issue cannot be neutral. In this case, we require the kth issue to be decided positively
(acceptance) when the number of persons with the positive opinion is sufficiently large.
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with a single exogenous linkage λ, symmetric linkage associated with λ is called symmetry
as in Samet and Schmeidler (2003).
We show that a rule satisfies monotonicity, independence, and symmetric linkage if and

only if there is a system of powers representing the rule and that the system is unique up
to a natural equivalence relation. Adding anonymity (names of opinion holders should not
matter), we establish a necessary and sufficient condition for existence of a non-exclusive
system of powers, under which everyone has the equal power on every issue. Adding neutral-
ity (names of issues should not matter either) instead of anonymity, we characterize rules
represented either by a constant non-exclusive system of powers (constant consent quotas
across issues) or by a monocentric system of powers (one and only one person has powers
on all issues). Finally, considering simple preference relations called dichotomous and tri-
chotomous preference relations, we show that rules represented by “quasi-plurality systems
of powers” are the only rules satisfying Pareto efficiency, independence, and symmetry in a
model with an exogenous linkage between issues and persons (e.g. the model in Samet and
Schmeidler 2003). Under a quasi-plurality system, exercising a power needs at least either
majority (or (n+1)/2) consent or 50% (or (n− 1) /2) consent. We establish a similar result
in the general model adding neutrality.

Related Literature

When issues are associated with personal matters such as believing in a religion, planting
a tree in one’s own backyard, etc., our powers and systems of powers can be interpreted as
a weak notion of rights and systems of rights. In the Arrovian framework, Sen (1970, 1976,
1983) and many of his critics formulate individual rights based on (i) existence of the so-called
recognized personal spheres (Gaertner, Pattanaik, and Suzumura 1992), and (ii) individuals’
decisiveness on personal spheres (social decision on an issue in someone’s sphere is decided
by the person himself). Despite some fundamental differences between our model and the
Arrovian framework (see Samet and Schmeidler 2003 for the details), our definition of a
system of powers is similar to this formulation with regard to aspect (i). This is because a
system of powers links issues with persons who have the powers on these issues. However,
with regard to aspect (ii), our definition is substantially weaker and flexible. Our powers,
interpreted as rights, are just rights to influence social decision, not necessarily decisive but
conditionally decisive (decisiveness is one extreme case in our definition). They are alienable
as in Blau (1975) and Gibbard (1974). But, alienation of rights in this paper relies on degree
of social consent.
Motivation for our weakening decisiveness component in the earlier definition comes, first

of all, from realistic rights that are often conditionally decisive. For example, consider rights
for smoking or for clean air. There are some places where smoking is prohibited and also
other places where smoking is allowed. A person’s desire is not decisive in his own smoking.
In order for a person to exercise his right, he needs to find a place where his desire can get
sufficient consent from others. Motivation comes also from the so-called paradox of Paretian
liberal. As pointed out by Sen (1970, 1976, 1983), Gibbard (1974) and other subsequent
works,4 existence of decisive rights is incompatible with Pareto efficiency. Sen (1983, p.14)

4See also Deb, Pattanaik, and Razzolini (1997) for the paradox in a framework where rights are represented
as a game form.
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proposed studying this compatibility issue in restricted preferences domains. However, we
show that the paradox prevails even on the extremely restricted domains of trichotomous
preferences (or dichotomous preferences). Thus, unless we are not going to abandon Pareto
efficiency, it is inevitable to think about weakening “decisiveness” component in the definition
of rights. How much weakening is necessary to escape from the paradox? Our answer is
quasi-plurality systems of powers.
The major difference between our model and the qualification problem in Samet and

Schmeidler (2003) lies in the following two extensions. First, in our model, the set of issues
may differ from the set of persons both in terms of elements and cardinality. There is no
exogenous linkage between issues and persons, while Samet and Schmeidler (2003) consider
a model where the set of issues equals the set of persons and so the identity mapping
is the exogenous linkage. This generalization enables us to have much wider variety of
applications. Second, we allow for “neutral opinion” and consider trichotomous opinions as
well as dichotomous opinions considered by Samet and Schmeidler (2003).
Our definition of “consent rules” is much weaker than Samet and Schmeidler’s. Consent

rules are those rules represented by a system of powers. Thus, we allow for a wide spectrum of
systems of powers, while Samet and Schmeidler’s definition allows for systems conforming to
the exogenous linkage. On the one extreme, we have monocentric systems of powers giving
only a single person powers on all issues. On the other extreme, we have non-exclusive
systems of powers giving everyone the equal power on every issue. We also find that on
the trichotomous domain, consent rules may quite differ from plurality rule, while, on the
dichotomous domain, they are close to plurality (or majority) rule. Much richer variety
of consent rules emerge after admitting neutral opinions. Neutral opinions, we think, are
prevalent in realistic decision procedures (abstention can be viewed as an expression of a
neutral opinion).
The rest of the paper is organized as follows. In Section 2, we define the model and basic

concepts. In Section 3, we define main axioms. In Section 4, we state preliminary results.
In Section 5, we state main results. Some proofs are collected in Section A.

2 The Model and Basic Concepts

Let N ≡ {1, · · · , n}, n ≥ 2, be the set of persons and M ≡ {1, · · · ,m} the set of issues.
Each person i ∈ N has his opinion on issues in M , represented by an 1 × m row vector
Pi consisting of 1, 0, or −1.5 A problem is an n×m opinion matrix P consisting of n row
vectors P1, · · · , Pn. Let PTri be the set of problems, called, the trichotomous domain. An
alternative is a list of either positive or negative decisions on all issues, formally, a vector of
1 and −1, x ≡ (x1, · · · , xk) ∈ {−1, 1}M , where 1 (resp. −1) in the kth component means
accepting the kth issue (resp. rejecting the kth issue). For each P ∈ PTri and each k ∈ M ,
P k denotes the kth column vector of P . Let

||P k
+|| ≡

X
{i∈N :Pik=1}

Pik and ||P k
−|| ≡

X
{i∈N :Pik=−1}

−Pik

5Notation ‘P ’ for ‘oPinion’.
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be the number of 1’s in P k and the number of −1’s in P k respectively. Let

||P k
+,−|| ≡ ||P k

+||+ ||P k
−||

be the total number of “votes”.
Let PDi be the subset of PTri, consisting of the opinion matrices whose entries are either

1 or −1, called the dichotomous domain. Let D be either one of the two domains. The
dichotomous domain is considered by Samet and Schmeidler (2003) in a special model of
qualification problems.6

A decision rule, or briefly, a rule, on D is a function f : D → {−1, 1}M associating
with each problem in the domain a single alternative. We are interested in rules that are
represented by a “system of powers” defined as follows. We introduce our definitions, first,
in the dichotomous domain, and then, in the trichotomous domain.
Given a rule f defined on the dichotomous domain PDi, person i ∈ N has the “power

to influence the social decision on the kth issue”, briefly, the power on the kth issue if the
decision on the kth issue is made following person i’s opinion whenever person i’s opinion
obtains sufficient consent from society: formally, there exist q+, q− ∈ {1, · · · , n + 1} such
that for each P ∈ PDi,

(i) when Pik = 1, fk (P ) = 1 ⇔ ||P k
+|| ≥ q+ ;

(ii) when Pik = −1, fk (P ) = −1 ⇔ ||P k
−|| ≥ q− .

(1)

The two numbers q+ and q− are called consent-quotas. The greater q+ or q− is, the higher
social consent is required for the exercise of the power. There are two extreme cases. When
q+ = q− = 1, i’s opinion determines social decision independently of social consent. Thus
we call it decisive. When q+ = n + 1 and q− = n + 1, i’s power is void because i’s opinion
is never reflected in social decision.
The total number of positive or negative votes always equals n on the dichotomous

domain. However, on the trichotomous domain, it is variable. Thus, we allow consent-quotas
to vary relative to the total number of votes. Given a rule f defined on PTri, a person i ∈ N
has the power on the kth issue if there exist three functions q+ : {1, . . . , n}→ {1, . . . , n+1},
q0 : {0, 1, . . . , n− 1}→ {0, 1, . . . , n}, and q− : {1, . . . , n}→ {1, . . . , n+ 1} such that for each
ν ∈ {0, 1, . . . , n}, q+ (ν), q0 (ν) and q− (ν) are in {0, 1, . . . , ν+1}, and for each P ∈ PTri with
||P k

+,−|| = ν,
(i) when Pik = 1, fk (P ) = 1 ⇔ ||P k

+|| ≥ q+ (ν) ;
(ii) when Pik = 0, fk (P ) = 1 ⇔ ||P k

+|| ≥ q0 (ν) ;
(iii) when Pik = −1, fk (P ) = −1 ⇔ ||P k

−|| ≥ q− (ν) .
(2)

Let q (·) ≡ (q+ (·) , q0 (·) , q− (·)) be the consent-quotas function (with a slight abuse of nota-
tion),7 and Q the family of consent-quota functions.

Definition 1 (System of Powers). A system of powers representing a rule f on PTri is a
6Samet Schmeidler (2003) consider dichotomous opinions that are described by vectors of 1 and 0. Number

0 in their paper has the same meaning as −1 in this paper.
7Since the three component functions q+, q0, q− have different domains, q cannot be described as a func-

tion. But, including 0 in the domain of q+ and q− and defining the values at 0 arbitrarily will not make any
difference and, this way, the problem can be avoided.
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function W : M → N ×Q mapping each issue k ∈M a pair of the person, W1 (k), who has
the power on the kth issue, and the consent-quotas function, W2 (k) = (q+ (·) , q0 (·) , q− (·)),
associated with the power.89 That is, when W1 (k) = i, for each ν ∈ {0, 1, . . . , n} and each
P ∈ PTri with ||P k

+,−|| = ν,

(i) when Pik = 1, fk (P ) = 1 ⇔ ||P k
+|| ≥ q+ (ν) ;

(ii) when Pik = 0, fk (P ) = 1 ⇔ ||P k
+|| ≥ q0 (ν) ;

(iii) when Pik = −1, fk (P ) = −1 ⇔ ||P k
−|| ≥ q− (ν) .

A rule may be represented by multiple systems of powers, although all these systems will be
shown to be equivalent under a natural equivalence relation to be defined in Section 4.

3 Axioms

In this section, we define axioms for rules, which are crucial in this paper.
The first axiom says that rules should not respond negatively when the opinion matrix

increases.

Monotonicity. For each P, P 0 ∈ D, if P = P 0, f (P ) = f (P 0).

The second axiom says that decisions on different issues should be made independently:
decision on the kth issue should rely only on the kth column of the opinion matrix.

Independence. For each P, P 0 ∈ D and each k ∈M , if P k = P 0k, fk (P ) = fk (P
0).

We refer readers to Rubinstein and Fishburn (1986), Kasher and Rubinstein (1997), and
Samet and Schmeidler (2003) for more discussion on the two axioms.
We next introduce an axiom that is a generalization of “symmetry” by Samet and Schmei-

dler (2003). Suppose that members of society have their own areas of specialty and each
issue lies in some of these areas. Ideally, it is important that society treats all members and
their areas of specialty in a symmetric manner. To illustrate this idea, suppose that the first
issue is in John’s area and the second issue is in Paul’s. Consider the case when both John
and Paul have positive opinions on their own issues and John is negative on Paul’s issue
while Paul is positive on John’s issue, as depicted in Table 1-(a). As in the table, suppose
that the social decision on the second issue (Paul’s), in this case, is against Paul’s opinion
(negative), while the decision on the first issue (John’s) follows John’s opinion. Now consider
another case when John and Paul face the reverse situation, that is, John faces the same
situation regarding his area as Paul faced in the earlier case, as depicted in Table 1-(b). If
the social decision on the first issue (John’s) in this case follows John’s opinion (so it differs
from the decision on the second issue in the earlier case), one could argue that the rule favors
John and John’s area relative to Paul and Paul’s area. Our next axiom prevents such an
asymmetric treatment.
An issue may lie in multiple areas and so there may exist multiple linkages between issues

and persons (multiple functions from the set of issues to the set of persons). Requiring

8Notation ‘W ’ for ‘poWer’.
9In the model with M = N , when W1 (·) is the identity function, Samet and Schmeidler (2003) call the

rule represented by W a consent rule.
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Issue 1 Issue 2
John 1 -1
Paul 1 1
Others 1 -1
Decision 1 -1

(a)

Issue 1 Issue 2
John 1 1
Paul -1 1
Others -1 1
Decision 1 1

(b)

Table 1: When issue 1 is in John’s area and issue 2 is in Paul’s, the social decisions in the
two cases exhibit a violation of symmetric linkage.

symmetric treatment with respect to all possible linkages can be too strong. The next axiom
requires symmetric treatment for at least one linkage. That is, it says that there be a linkage
between issues and persons and that given this linkage, the rule should treat each person i
and i’s issues symmetrically to any other person j and j’s issues. Technically, when names
of person i and all i’s issues are switched simultaneously to names of person j and all j’s
issues, social decision should also be switched accordingly.
To define this axiom formally, let λ : M → N be a function between issues and persons,

called a linkage. For each i ∈ N , let us call elements in λ−1 (i) person i’s issues. Let
π : N → N and δ : M → M are permutations on N and on M such that δ maps the set of
each person i’s issues onto the set of person π (i)’s issues. Let δ

πP be the matrix such that
for each i ∈ N and each k ∈ M , δπPik ≡ Pπ(i)δ(k). Then each person i and his issue k play
the same role in δ

πP as person π (i) and his issue δ (k) do in P .

Symmetric Linkage. There is λ : M → N such that for each permutation π : N → N and
each permutation δ : M →M , if for each i ∈ N , δ maps the set of i’s issues λ−1 (i) onto the
set of π (i)’s issues λ−1 (π (i)), then for each k ∈M , fk

¡
δ
πP
¢
= fδ(k) (P ).

Given a function λ : M → N , we say that a rule f satisfies λ-symmetry if f satisfies
symmetric linkage with respect to λ : M → N . Note that if π (i) = j and |λ−1 (i) | 6=
|λ−1 (j) |, then there is no permutation δ : M → M satisfying the ontoness condition for
δ stated in the definition of symmetric linkage. Thus, λ-symmetry does not impose any
restriction for such π. In particular, if λ−1 (i) = M , λ-symmetry applies to only those
permutations on N not changing the name of i and all permutations on M .10

Next are two standard axioms of social choice, known as anonymity and neutrality. The
former says that social decision should not depend on how persons are named and the latter
says that social decision should not depend on how issues are labeled. For each permutation
π on N , let πP ∈ PTri be such that for each i ∈ N and each k ∈ M , πPik ≡ Pπ(i)k. For
each permutation δ on M , let δP ∈ PTri be such that for each i ∈ N and each k ∈ M ,
δPik ≡ Piδ(k).

Anonymity. For each P ∈ PTri and each permutation π : N → N , f (πP ) = f (P ).

10In the qualification problems considered by Samet and Schmeidler (2003), M = N . Thus there is an
exogenous one-to-one correspondence between M and N , namely the identity function λID (i) = i, for each
i ∈M . Their symmetry axiom coincides with λID -symmetry.
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Neutrality. For each P ∈ PTri, each permutation δ : M →M , and each k ∈M , fk
¡
δP
¢
=

fδ(k) (P ).

Clearly, the combination of anonymity and neutrality implies symmetric linkage but the
converse does not hold.

4 Preliminary Results

We distinguish powers into two types. The power on the kth issue is (fully) exclusive if
there is a person i who has the power on the kth issue and no one else has the power on
the kth issue. It is (fully) non-exclusive if all agents have the “equal” power on the kth issue
associated with a single consent-quotas function (or, on the dichotomous domain, a list of
consent-quotas). In proving Proposition 2, we will show that the power on an issue is either
exclusive or non-exclusive: see Remark 2. Either one and only one person has the power or
all persons have the equal power.
Given a system of powers W , when the power on the kth issue is non-exclusive, who has

the power on this issue is not essential. Thus by changingW1 (k), we may find other systems
representing the same rule. Thus the following equivalence relation on systems of powers is
natural. Two systems of powers W and W 0 are equivalent, denoted by W ∼ W 0, if for each
k with W1 (k) 6=W 0

1 (k), the power on the k
th issue is non-exclusive (so, W2 (k) =W 0

2 (k)).
The following two extreme systems are notable. Under a non-exclusive system of powers,

everyone has the non-exclusive power on every issue. Under a monocentric system of powers,
one and only one agent has the exclusive power on every issue.

Lemma 1. Assume that a rule f is represented by a system of powers W . Let k ∈ M ,
i ≡W1 (k), and q (·) ≡W2 (k). Then for each ν ∈ {1, . . . , n}, (i) q+ (ν)+ q− (ν) = ν+1 and
when ν ≤ n− 1, q+ (ν) = q0 (ν) if and only if for each P ∈ PTri with ||P k

+,−|| = ν,

fk (P ) = 1 ⇔ ||P k
+|| ≥ q+ (ν) . (3)

(ii) q (ν) = (ν + 1, ν + 1, 1) if and only if for each P ∈ PTri with ||P k
+,−|| = ν, fk(P ) = −1.

(iii) q (ν) = (1, 0, ν + 1) if and only if for each P ∈ PTri with ||P k
+,−|| = ν, fk(P ) = 1.

Thus, if for each ν ∈ {1, . . . , n}, one of the three cases holds, then the power on the kth issue
is non-exclusive.

Proof. Let ν ∈ {1, . . . , n}. Assume q+ (ν) + q− (ν) = ν + 1 and q+ (ν) = q0 (ν). Then the
three parts (i)-(iii) in (2) collapse into (3). Conversely, if (3) holds, then from parts (ii) and
(iii) in (2), q0(ν) = q+(ν) and q+(ν) = ν + 1− q−(ν).
Parts (ii) and (iii) are straightforward. Note that if any of the three cases (i)-(iii) holds,

who has the power on the kth issue is not essential. Changing W1 (k) into any other person
does not affect the rule the system represents, which means everyone has the power on the kth

issue associated with the same consent-quotas function. Thus the power is non-exclusive.

We now show that the three cases of non-exclusive powers in Lemma 1 characterize
non-exclusive powers.
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Proposition 1. The power on an issue associated with (q+ (·) , q0 (·) , q− (·)) is non-exclusive
if and only if for each ν ∈ {1, . . . , n}, (i) q+ (ν) ≤ ν, q− (ν) ≤ ν, q+ (ν)+ q− (ν) = ν+1, and
when ν ≤ n − 1, q0 (ν) = q+ (ν), or (ii) (q+ (ν) , q− (ν)) ∈ {(ν + 1, 1) , (1, ν + 1)} and when
ν ≤ n− 1, (q+ (ν) , q0 (ν) , q− (ν)) ∈ {(ν + 1, ν + 1, 1) , (1, 0, ν + 1)}.
The proof is in Appendix A.1.
The next result is uniqueness of systems of powers representing a rule.

Proposition 2. Assume n ≥ 4. If a rule is represented by a system of powers, then the
system is unique up to the equivalence relation ∼.
The proof is in Appendix A.1.

We next state necessary and sufficient conditions on a system of powers which guarantee
monotonicity or symmetric linkage of the rule the system represents.
A consent-quotas function q (·) ≡ (q+ (·) , q0 (·) , q− (·)) has component ladder property if

for each ν ∈ {1, . . . , n}, the following three inequalities hold whenever they are well-defined
(i) q+ (ν − 1) ≤ q+ (ν) ≤ q+ (ν − 1) + 1;
(ii) q0 (ν − 1) ≤ q0 (ν) ≤ q0 (ν − 1) + 1;
(iii) q− (ν − 1) ≤ q− (ν) ≤ q− (ν − 1) + 1.

(4)

The function has intercomponent ladder property if for each ν ∈ {1, . . . , n},

q+ (ν) ≤ q0 (ν − 1) + 1 ≤ ν − q− (ν) + 2. (5)

The function has ladder property if it has the above two properties. We also say that a
system of powersW has ladder property if its consent-quotas functions have ladder property.

Proposition 3. A rule represented by a system of powers satisfies monotonicity if and only
if the system of powers has ladder property.

The proof is given in Appendix A.2.
A system of powersW : M → N×Q satisfies horizontal equality if for each pair of persons

i and j ∈ N with the same number of issues under W1, that is, |W−1
1 (i) | = |W−1

1 (j) |, their
powers are associated with the same consent-quotas function, that is, for each k ∈ W−1

1 (i)
and each l ∈ W−1

1 (j), W2 (k) = W2 (l). When i = j, this property says that person i’s
powers on two different issues are associated with the same consent-quotas function.

Proposition 4. A rule represented by a system of powers satisfies symmetric linkage if and
only if the system of powers satisfies horizontal equality.

The proof is given in Appendix A.2.
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5 Main Results

5.1 Monotonicity, Independence, and Symmetric Linkage

In this section, we state our results imposing the three axioms, monotonicity, independence,
and symmetric linkage.
If a rule is represented by a system of powers, decisions on different issues are made

independently and so the rule satisfies independence. By Propositions 3 and 4, if the sys-
tem of powers satisfies both ladder property and horizontal equality, the rule also satisfies
monotonicity and symmetric linkage. Our first main result tell us about the converse. It says
that the combination of the three axioms is sufficient for existence of a system of powers.

Theorem 1. Let D ∈ {PDi,PTri}. A rule on D satisfies monotonicity, independence, and
symmetric linkage if and only if it is represented by a system of powers satisfying ladder
property and horizontal equality. Moreover, the system is unique up to the equivalence rela-
tion ∼.
The proof is in the Appendix A.3. We show independence of the three axioms later.
Adding anonymity, we obtain:

Theorem 2. Let D ∈ {PDi,PTri}. The following are equivalent.
(i) A rule on D satisfies monotonicity, independence, symmetric linkage, and anonymity.
(ii) A rule on D is represented by a non-exclusive system of powers satisfying ladder property
and horizontal equality.
(iii) A rule on D is represented by a system of powers W satisfying ladder property and
horizontal equality such that for each k ∈M , letting (q+ (·) , q0 (·) , q− (·)) ≡W2 (k), for each
ν ∈ {1, . . . , n}, (iii.1) q+ (ν) ≤ ν, q− (ν) ≤ ν, q+ (ν) + q− (ν) = ν + 1, and when ν ≤ n− 1,
q0 (ν) = q+ (ν), or (iii.2) (q+ (ν) , q− (ν)) ∈ {(ν + 1, 1) , (1, ν + 1)} and when ν ≤ n − 1,
(q+ (ν) , q0 (ν) , q− (ν)) ∈ {(ν + 1, ν + 1, 1) , (1, 0, ν + 1)}.
Proof. Let k ∈ M and i ≡ W1 (k). By anonymity, when i has the power on the kth

issue, then every other agent should have the same power too. Thus the power on the
kth issue is non-exclusive. The proof for the reverse direction is straightforward. This
proves the equivalence between (i) and (ii). We obtain the remaining equivalence from
Proposition 1.

On the dichotomous domain PDi, (iii) of Theorem 2 can be simplified into the following:
for each k ∈ M , letting (q+, q−) ≡ W2 (k), (iii.1) q+ ≤ n, q− ≤ n and q+ + q− = n + 1 or
(iii.2) (q+, q−) ∈ {(n+ 1, 1), (1, n+ 1)}.
Adding neutrality to the three axioms of Theorem 1, we characterize two extreme types

of systems of powers, monocentric systems and non-exclusive systems.

Theorem 3. Let D ∈ {PDi,PTri}. A rule on D satisfies monotonicity, independence, sym-
metric linkage, and neutrality if and only if it is represented either by a monocentric system
of powers or by a constant non-exclusive system of powers satisfying ladder property and
horizontal equality, in either case.

Proof. If f is represented by a monocentric system of powers, then one and only one agent
has the power on each issue. By horizontal equality, the consent-quotas functions for all issues
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are identical. Hence decisions on different issues are made neutrally. If f is represented by a
constant non-exclusive system of powers, then because of the constancy condition, f satisfies
neutrality.
To prove the converse, let f be a rule satisfying the stated axioms. By Theorem 1, there

is a system of powers W representing f . Suppose that there is i ∈ N who has an exclusive
power on the kth issue. Then by neutrality, i should have the same exclusive power on
every other issue. Thus, the system is monocentric. If there is no exclusive power, then by
Proposition 2, the system is non-exclusive. And by neutrality, it is constant.

We next consider duality (Samet and Schmeidler 2003). Each issue may be defined as
representing a certain statement (a proposal) or its negation (the antiproposal): for example,
qualification or disqualification. Which representation is taken does not matter if the rule
satisfies duality.

Duality. For each P ∈ PTri, f (−P ) = −f (P ).
On the trichotomous domain PTri, duality is incompatible with the combination of the

three axioms in Theorem 1. For example, if f is a rule satisfying the three axioms in
Theorem 1, then for each i ∈ N , each k ∈ λ−1 (i), and each P ∈ PTri with Pik = 0 and
||P k

+|| = ||P k
−||, fk(−P ) = fk(P ), violating duality. However, on the dichotomous domain

PDi, adding duality, we are able to pin down a smaller family of rules. A system of powersW
has quotas duality if for each issue k ∈M , the consent-quotas function (q+ (·) , q0 (·) , q− (·)) ≡
W2 (k) satisfies q+ (·) = q− (·).
Theorem 4. On the dichotomous domain PDi, a rule satisfies monotonicity, independence,
symmetric linkage, and duality if and only if it is represented by a system of powers satisfying
ladder property, horizontal equality and quotas duality.

Proof. Let f be a rule and W a system of powers of f such that for each k ∈ M , if we let
(q+, q−) ≡W2 (k), q+ = q−. Let i ∈ N and k ∈W−1

1 (i). Let P ∈ PDi. Note (−P )ik = −Pik,
||(−P )k+|| = ||P k

−||, and ||(−P )k−|| = ||P k
+||. Therefore, ||(−P )k−|| ≥ q− ⇔ ||P k

+|| ≥ q+ and
||(−P )k+|| ≥ q+ ⇔ ||P k

−|| ≥ q−. Then f (−P ) = −f (P ). Hence f satisfies duality.
Conversely, let f be a rule satisfying the four axioms. By Theorem 1, there exists a system

of powers W representing f . Let k ∈ M , i ≡ W1 (k), and (q+, q−) ≡ W2 (k). Suppose, by
contradiction, that q+ 6= q−, say, q+ > q− (the same argument applies when q+ < q−). Let
r be the number such that q+ > r ≥ q−. Then there exists P ∈ PDi such that Pik = −1
and ||P k

−|| = r. Then fk (P ) = −1. Since (−P )ik = 1 and || (−P )k+ || = ||P k
−|| = r < q+,

fk (−P ) = −1, contradicting duality.
When n is even, there is no system of powersW satisfying (iii.1) of Theorem 2 and quotas

duality. However, when n is odd, these two properties imply majority rule. Thus we obtain:

Corollary 1. Assume that n is odd. On the dichotomous domain PDi, majority rule is the
only rule satisfyingmonotonicity, independence, symmetric linkage, anonymity, and duality.

When we consider neutrality instead of anonymity, we obtain a characterization of the
family consisting of majority rule and rules represented by monocentric systems of powers
with quotas duality.
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Corollary 2. Assume that n is odd. On the dichotomous domain PDi, a rule satisfies
monotonicity, independence, symmetric linkage, neutrality, and duality if and only if it is
majority rule or a rule that is represented by a monocentric system of powers satisfying
ladder property, horizontal equality and quotas duality.

Proof. To prove the nontrivial direction, let f be a rule satisfying the stated axioms. Then
by Theorem 3, it is represented either by a monocentric system of powers or by a constant
non-exclusive system of powers. In the former case, we are done. In the latter case, the rule
satisfies anonymity. Thus it follows from Corollary 1 that f is majority rule.

We now investigate consequences of dropping any one of the three main axioms,monotonic-
ity, independence and symmetric linkage.

Dropping Symmetric Linkage

We characterize the following rules satisfying monotonicity and independence. These
rules can be described by “decisive structures” between subgroups of N (Ju 2003).11 Let
C∗ ≡ {(C1, C2) ∈ 2N × 2N : C1 ∩ C2 = ∅} be the set of all pairs of disjoint subgroups of N .
For each k ∈ M , a decisive structure for the kth -issue, denoted by Ck ⊆ C∗, is a subset of
C∗. It satisfies monotonicity if for each (C1, C2) ∈ Ck, if (C 0

1, C
0
2) ∈ C∗ is such that C 0

1 ⊇ C1
and C 0

2 ⊆ C2, then (C 0
1, C

0
2) ∈ Ck. For each P ∈ PTri and each k ∈M , let

N
¡
P k
+

¢ ≡ {i ∈ N : Pik = 1} and N
¡
P k
−
¢ ≡ {i ∈ N : Pik = −1}.

A rule f is represented by a profile of decisive structures (Ck)k∈M if for each P ∈ D and each
k ∈M , fk (P ) = 1 if and only if (N(P k

+), N(P
k
−)) ∈ Ck. Any rule represented by a profile of

decisive structures satisfies independence, since it makes decisions issue by issue. Conversely,
if a rule satisfies independence, the decision on the kth issue relies only on the pair of the
set of persons in favor of k and the set of persons against k. Thus, it is represented by a
profile of decisive structures. Monotonicity of decisive structures is a necessary and sufficient
condition for monotonicity of the rule. Therefore we obtain:

Proposition 5. Let D ∈ {PDi,PTri}. (i) A rule on D satisfies independence if and only if it
is represented by a profile of decisive structures. (ii) A rule on D satisfies independence and
monotonicity if and only if it is represented by a profile of monotonic decisive structures.

The formal proof is left for readers.
Let I∗ ≡ {(n1, n2) ∈ Z+×Z+ : n1+n2 ≤ n}, where Z+ is the set of non-negative integers.

Any subset I ⊆ I∗ is called an index set. It is comprehensive if for each (n1, n2) ∈ I and
each (n01, n

0
2) ∈ I∗, if n01 ≥ n1 and n02 ≤ n2, then (n01, n

0
2) ∈ I. Using Proposition 5, it

is easy to characterize rules satisfying independence and anonymity. Decisive structures of
each of these rules can be described by index sets. Formally, a counting rule is a rule that is
represented by a profile of index sets, (Ik)k∈M , as follows: for each P ∈ PTri and each k ∈M ,
fk (P ) = 1 ⇔ (||P k

+||, ||P k
−||) ∈ Ik. It is easy to show that a counting rule is monotonic if

and only if all index sets in the profile (Ik)k∈M are comprehensive. Thus, we obtain:

11Ju (2003) calls decisive structures “power structures”. We use different name to avoid confusion with
our stronger notion of power.
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Proposition 6. Let D ∈ {PDi,PTri}. (i) A rule on D satisfies independence and anonymity
if and only if it is a counting rule. (ii) A rule on D satisfies monotonicity, independence,
and anonymity if and only if it is a counting rule represented by a profile of comprehensive
index sets.

The formal proof is left for readers.

Dropping Monotonicity

An extended system of powers eW maps each issue k ∈M into a person eW1 (k) ∈ N and
a triple of index sets eW2 (k) = (Ik+, Ik0 , Ik−). A rule f is represented by an extended system
of powers eW if for each P ∈ PTri and each k ∈M ,

(i) when Pik = 1, fk (P ) = 1⇔
¡||P k

+||, ||P k
−||
¢ ∈ Ik+;

(ii) when Pik = 0, fk (P ) = 1⇔
¡||P k

+||, ||P k
−||
¢ ∈ Ik0 ;

(iii) when Pik = −1, fk (P ) = −1⇔
¡||P k

−||, ||P k
+||
¢ ∈ Ik−; (6)

where i ≡ eW1 (k) and (Ik+, Ik0 , Ik−) ≡ eW2 (k).

Proposition 7. Let D ∈ {PDi,PTri}. A rule over D satisfies independence and symmetric
linkage if and only if it is represented by an extended system of power eW (·) satisfying hor-
izontal equality, that is, for each i, j ∈ N with |eW−1

1 (i) | = |eW−1
1 (j) |, each k ∈ eW

−1
1 (i),

and each l ∈ eW
−1
1 (j), eW2 (k) = eW2 (l).12

The proof is in Appendix A.3.

Dropping Independence

For each P ∈ PTri, let χ (P ) ≡
P

k∈M ||P k
−||/|M |. Let f be the rule represented by χ (·)

as follows: for each P ∈ PTri and each k ∈M ,

fk (P ) = 1⇔ ||P k
+|| ≥ χ (P ) .

By definition, this rule treats agents anonymously and issues neutrally. Thus it satisfies
anonymity, neutrality, and so symmetric linkage. If P, P 0 ∈ PTri are such that for each
k ∈ M , N

¡
P k
+

¢ ⊆ N
¡
P 0k
+

¢
and N

¡
P k
−
¢ ⊇ N

¡
P 0k
−
¢
,
P

k∈M ||P k
−||/|M | ≥

P
k∈M ||P 0k

− ||/|M |,
that is, χ (P ) ≥ χ (P 0). Then for each k ∈ M , if fk (P ) = 1 (that is, ||P k

+|| ≥ χ (P )),
||P 0k

+ || ≥ ||P k
+|| ≥ χ (P ) ≥ χ (P 0) and so fk (P

0) = 1. Thus f satisfies monotonicity. The
threshold level χ (P ) depends on opinions on all issues. So f violates independence. Using
different χ (·), we can define other examples of rules violating independence but satisfying
other axioms. However, we leave it for future research to characterize the entire family of
rules satisfying monotonicity and symmetric linkage.

Anonymity and Representation by A Non-Exclusive System of Powers

12This property of eR (·) is needed to guarantee symmetric linkage like horizontal equality of a system of
powers.
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Consider a rule f satisfyingmonotonicity and independence. If f also satisfies anonymity,
then f is a monotonic counting rule. Thus, there is a profile of comprehensive index sets
(Ik)k∈M representing f . For each ν ∈ {0, 1, . . . , n}, if {n1 : (n1, ν − n1) ∈ Ik} 6= ∅, let
qk+ (ν) ≡ min{n1 : (n1, ν − n1) ∈ Ik}; otherwise, qk+(ν) ≡ ν + 1, and let qk0 (ν) ≡ qk+ (ν) and
qk− (ν) ≡ ν + 1 − qk+ (ν). Then we obtain one of the three cases in Lemma 1 and so f is
represented by a non-exclusive system. Conversely, if f is represented by a non-exclusive
system, f satisfies anonymity. Therefore, we obtain:

Proposition 8. Let f be a rule satisfying monotonicity and independence. Then the fol-
lowing are equivalent.
(i) Rule f satisfies anonymity.
(ii) Rule f is represented by a non-exclusive system of powers satisfying ladder property.
(iii) Rule f is a monotonic counting rule.

If a monotonic counting rule f has at most n different index sets, then f can be rep-
resented by a system of powers satisfying horizontal equality. This is because there is a
function W1 (·) that maps each pair k, l ∈ M with the same index set I into the same per-
son. Thus f satisfies symmetric linkage. If f has more than n different index sets, f violates
symmetric linkage. Thus we obtain:

Corollary 3. Assume n ≥ m. Let f be a rule satisfying monotonicity and independence.
Then the following are equivalent.
(i) Rule f satisfies anonymity.
(ii) Rule f is represented by a non-exclusive system of powers satisfying ladder property and
horizontal equality.
(iii) Rule f is a monotonic counting rule.

Remark 1. This proposition shows that if n ≥ m,monotonicity, independence and anonymity
together imply symmetric linkage. Therefore, in this case, symmetric linkage in Theorem 2
and Corollary 1 can be dropped.

Models with An Exogenous Linkage between Issues and Persons

We now turn to models considered by Samet and Schmeidler (2003) and its generalization.
Assume that there is an exogenous linkage between issues and persons, denoted by λ : M →
N . In the model with λ, we skip λ in λ-symmetry and simply call this axiom symmetry.
When M = N and λ is the identity function, our symmetry coincides with the definition by
Samet and Schmeidler (2003). Replacing symmetric linkage in all our results with symmetry,
we obtain characterizations of subfamilies of rules represented by systems of powers W (·)
conforming to the exogenous linkage, that is, W1 (·) = λ (·).
Moreover, depending on λ (·), some results can be strengthened. For example, suppose

that λ (·) is not constant. Then no system of powers conforming to λ (·) can be monocentric.
Thus, it follows from Theorem 3 that a rule over D ∈ {PTri,PDi} satisfies monotonicity,
independence, symmetry, and neutrality if and only if it is represented by a constant non-
exclusive system of powers conforming to the exogenous linkage λ and satisfying ladder
property and horizontal equality. Thus these four axioms together imply anonymity. Also it
follows from Corollary 2 that when n is odd, majority rule is the only rule on PDi satisfying
monotonicity, independence, symmetry, neutrality, and duality.
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5.2 Pareto Efficiency and Existence of A System of Powers

Compatibility of Pareto efficiency and existence of so-called libertarian rights (decisive pow-
ers) is widely studied by a number of authors followed by the celebrated work, Sen (1970).
To discuss this issue in our framework, we now consider preference relations.
Opinions are partial description of the following preference relations. A separable pref-

erence relation R0 orders social decisions in such a way that for each k ∈ M and each
quadruple x, x0, y, y0 ∈ {−1, 1}M with xk = yk, x0k = y0k, x−k = x0−k, and y−k = y0−k,

x ÂR0 x0 ⇔ y ÂR0 y0 ;

x ∼R0 x0 ⇔ y ∼R0 y0 ,

where ÂR0 and ∼R0 are strict and indifference relations associated with R0. Then issues are
partitioned into goods, bads, and nulls depending on whether they have positive or negative
or indifferent impacts on the person’s well-being. Thus, each separable preference R0 is
associated with an opinion vector P0, each positive (resp. negative or zero) component of
P0 representing the corresponding issue as a good (resp. a bad or a null). Obviously, there
are a number of separable preference relations corresponding to a single opinion vector. Let
R be the family of profiles of separable preference relations. A rule over the separable
preferences domain R associates with each profile of preference relations a single alternative
in {−1, 1}M . With the above stated relationship between opinions and preferences, axioms
and powers defined for the opinion domain are easily extended to the corresponding notions
on the separable preferences domain.

5.2.1 Sen’s Paradox of Paretian Liberal

Sen (1970) shows in the Arrovian social choice model that there is no Pareto efficient prefer-
ence aggregation rule that gives at least two agents libertarian rights. This is so-called Sen’s
paradox of Paretian liberal. Sen’s reasoning does not directly apply here because of the fol-
lowing differences between our model and his. The alternative space, here, is a product space
and, associated with this structure, preference relations have the separability restriction. In
addition, while Sen (1970) considers preference aggregation rules, we consider social choice
functions. Despite these differences, our notion of decisive powers is a natural counterpart
to Sen’s libertarian rights. In fact, our decisive powers are the same as rights formulated by
Gibbard (1974). Because we focus on separable preference relations, the so-called Gibbard
paradox does not prevail in our model as pointed out by Sen (1983, p.14). Thus Sen’s quest
is still meaningful here. Does Sen’s paradox prevail in our model? Not surprisingly, it does,
as we show below. Furthermore, we show that the paradox prevails in a much stronger sense
in a substantially restricted domain of preference relations.
We first show that the paradox prevails on the separable preferences domain. Sen’s (1970)

minimal liberalism postulates that there should be at least two persons who have decisive
powers. Assume that persons 1 and 2 are given the decisive powers on the first and second
issues respectively. Consider the following preference relations R1 and R2 of the two persons.
The first issue is a bad for R1 and any decision with the positive second component is
preferred, under R1, to any decision with the negative second component. The second issue
is a bad for R2 and any decision with the positive first component is preferred, under R2,
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to any decision with the negative first component. Then by the decisive powers of the two
persons, decisions on the first and second issues are both negative. But the two persons
will be better off at any decision with positive components for both issues. This confirms
that minimal liberalism and Pareto efficiency are incompatible on the separable preferences
domain.13

Preference relations in the above example are “meddlesome”’ (Blau 1975); person 1 cares
so much about person 2’s issue that positive decision on this issue is preferred to the negative
decision no matter what decisions are made on the other issues. Without such meddlesome
preference relations, the paradox of Paretian liberal may not apply.
Unfortunately, the paradox prevails even in a substantially restricted environment where

only “trichotomous” or “dichotomous” preference relations are admissible. A trichoto-
mous preference relation R0 is a separable preference relation represented by a function
U0 : {−1, 1}M → R such that for each x ∈ {−1, 1}M , U0 (x) =

P
k∈M :xk=1

P0k, where
P0 ∈ {−1, 0, 1}M is the opinion vector corresponding to R0.14 A dichotomous preference
relation is a trichotomous preference relation for which each issue is either a good or a bad.
Let RTri be the family of profiles of trichotomous preference relations and RDi the family of
profiles of dichotomous preference relations. Note that there are one-to-one correspondences
between RTri and PTri and between RDi and PDi.
To show the paradox, suppose that there are at least three persons, n ≥ 3 and that

persons 1 and 2 have the decisive powers respectively on issues 1 and 2. Consider the profile
of dichotomous preference relations (Ri)i∈N given by the following opinion vectors: P1 ≡
(1,−1,−1, . . . ,−1), P2 ≡ (−1, 1,−1, . . . ,−1), and for each i ∈ N\{1, 2}, Pi ≡ (−1, . . . ,−1).
Then by the decisive powers of persons 1 and 2, f1 (R) = f2 (R) = 1. If the rule is Pareto
efficient, for each k ∈ M\{1, 2}, fk (R) = −1. Thus f (R) = (1, 1,−1, . . . ,−1). Note that
this alternative is indifferent to x ≡ (−1, . . . ,−1) for both person 1 and person 2 and x is
preferred to f (R) by all others. This contradicts Pareto efficiency. Therefore, when there
are at least three persons, no Pareto efficient rule on the dichotomous preferences domain
satisfies minimal liberalism.
Note that unlike the previous paradox on the separable preferences domain, we need the

assumption n ≥ 3. The case with two persons ruled out by this assumption is very limited.
However, it should be noted that the paradox does not apply in the two-person case (then
decisiveness is quite close to plurality principle since one person’s opinion accounts for 50%).
This is an implication of our results in the next section.

5.2.2 Quasi-Plurality Systems of Powers

The observations made in Section 5.2.1 show that decisiveness component in the definition
of libertarian rights is too strong to be compatible with Pareto efficiency. They force us
to consider non-decisive powers instead. Is it, then, possible to have non-decisive powers
and at the same time to satisfy Pareto efficiency? It is indeed possible on the trichotomous
preferences domain RTri and also on the dichotomous preferences domain RDi as we show
in this section. Moreover, we provide a characterization of plurality-like rules on the basis
of Pareto efficiency, independence, and symmetry (or symmetric linkage). Since we only

13This was originally proven by Gibbard (1974, Theorem 2).
14That is, U0 (x) = |{k ∈M : xk = 1 and P0k = 1}| − |{k ∈M : xk = 1 and P0k = −1}|.
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consider trichotomous or dichotomous preference relations, throughout this section, we use
opinion vectors to refer to the corresponding trichotomous preference relations.
We begin with a definition of important systems of powers in our results.

Definition 2 (Quasi-Plurality Systems of Powers). A system of powers W is called a
quasi-plurality system if there is a consent-quotas function q (·) ≡ (q+ (·) , q0(·), q− (·)) such
that for each k ∈M , W2 (k) = (q+ (·) , q0 (·) , q− (·)) and for each ν ∈ {1, . . . , n},

q+ (ν) , q− (ν) ∈ {ν − 1
2

,
ν + 1

2
}, (7)

for each ν ∈ {0, . . . , n− 1},
q0 (ν) ∈ {ν − 1

2
,
ν + 1

2
}. (8)

The rule represented by a quasi-plurality system is called a quasi-plurality rule.

Clearly, quasi-plurality systems satisfy horizontal equality and thus quasi-plurality rules
satisfy symmetric linkage. Obviously, plurality rule is an example; it is represented by a non-
exclusive quasi-plurality system. Quasi-plurality systems are not always non-exclusive. For
example, for each ν ∈ {1, . . . , n}, let q+ (ν) = q− (ν) ≡ (ν − 1) /2 and for each ν ∈ {0, . . . , n−
1}, let q0 (ν) ≡ (ν − 1) /2. Then the power on each issue is exclusive by Proposition 1.
However, note that for each k ∈ M , if ||P k

+|| 6= ||P k
−||, fk (P ) equals the decision made by

plurality rule and that if ||P k
+|| = ||P k

−||, fk (P ) is determined by the opinion of the person,
say i, who has the power on the kth issue (that is, fk (P ) = 1 if Pik = 1 or 0; fk (P ) = −1
if Pik = −1). Thus “exclusiveness” feature, if it exists, in a quasi-plurality system plays a
role only when there is a tie between the group of persons with the positive opinion and the
group of persons with the negative opinion.
Any quasi-plurality rule f has the following property: for each k ∈M ,

fk (P ) = 1 ⇒ ||P k
+|| ≥ ||P k

−||;
||P k

+|| > ||P k
−|| ⇒ fk (P ) = 1.

(9)

Note that
P

i∈N Ui (x) =
P

i∈N
P

{k∈M :xk=1} Pik =
P

{k∈M :xk=1}(||P k
+|| − ||P k

−||). Therefore,
by (9), any quasi-plurality rule maximizes the sum of utilities. Thus it satisfies Pareto
efficiency. Moreover, our next result shows that quasi-plurality rules are the only rules
satisfying Pareto efficiency, independence, and symmetry.

Theorem 5. Assume that there is an exogenous linkage λ between issues and persons
and that all persons are linked to the same number of issues under λ. Then a rule on
D ∈{RTri,RDi} satisfies Pareto efficiency, independence, and symmetry if and only if it is
represented by a quasi-plurality system of powers conforming to λ.15

The proof is in Appendix A.4. Note that this result holds in the model considered by
Samet and Schmeidler (2003) because in their model N =M and λ is the identity function.

15This result is similar to the efficiency characterization of plurality social choice in Ju (2005). However,
there are crucial differences. Ju (2005) imposes anonymity instead of symmetry and his result holds only
on RTri, while Theorem 5 holds both on RTri and on RDi. The family of quasi-plurality rules is larger than
the family of “semi-plurality rules” characterized in Ju (2005).
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Not all quasi-plurality systems satisfy intercomponent ladder property. This extra property
is obtained after adding monotonicity to the three axioms in the theorem.
Next is a direct corollary to Theorem 5.

Corollary 4. Given the assumption in Theorem 5, a rule on D ∈{RTri,RDi}, represented
by a system of powers conforming to the exogenous linkage λ, satisfies Pareto efficiency if
and only if the system of powers is a quasi-plurality system.

Adding neutrality allows us to establish the same characterization in the model without
any exogenous linkage.

Theorem 6. Suppose m ≥ n. A rule on D ∈{RTri,RDi} satisfies Pareto efficiency, in-
dependence, symmetric linkage, and neutrality if and only if it is represented either by a
non-exclusive quasi-plurality system of powers or by a monocentric quasi-plurality system of
powers.

The proof is in Appendix A.4.

A Proofs

A.1 Proofs of Propositions 1 and 2

LetWf be the set of systems of powers representing a rule f .

Claim 1. Assume that W,W 0 ∈ Wf and for some k ∈ M , W1 (k) 6= W 0
1 (k). Let q (·) ≡

W2 (k) and q0 (·) ≡W 0
2 (k). Then for each ν ≥ 2, we have

(i) q+ (ν) ≥ 2 and q0+ (ν) ≥ 2 ⇒ q+ (ν) = q0+ (ν) ;

(ii) q− (ν) ≥ 2 and q0− (ν) ≥ 2 ⇒ q− (ν) = q0− (ν) .

Proof. Let i ≡ W1 (k) and i0 ≡ W 0
1 (k). We prove (i) and skip the same proof of (ii).

Suppose that q+ (ν) 6= ν + 1 and q0+ (ν) 6= ν + 1. Because ν ≥ 2, q+ (ν) 6= ν + 1, and
q+ (ν) ≥ 2, there exists P such that ||P k

+,−|| = ν, Pik = Pi0k = 1 and ||P k
+|| = q+ (ν). Then

by i’s power W (k), fk (P ) = 1. Thus, by i0’s power W 0 (k), q0+ (ν) ≤ q+ (ν). Similarly, we
show the reverse inequality.
If q+ (ν) = ν + 1, then consider P such that ||P k

+,−|| = ν, Pik = Pi0k = 1 and ||P k
+|| = ν.

By i’s power W (k), fk (P ) = −1. Then by i0’s power W 0 (k), q0+ (ν) > ||P k
+|| = ν, which

implies q0+ (ν) = ν + 1.

Claim 2. Assume that W,W 0 ∈ Wf and for some k ∈ M , W1 (k) 6= W 0
1 (k). Let q (·) ≡

W2 (k) and q0 (·) ≡W 0
2 (k). Then for each ν ≥ 2, we have

(i) q+ (ν) = 1 ⇔ q0− (ν) ≥ ν ;

(ii) q− (ν) = 1 ⇔ q0+ (ν) ≥ ν .

Proof. Let i ≡ W1 (k) and i0 ≡ W 0
1 (k). We prove the first equivalence and skip the same

proof of the second. Assume q+ (ν) = 1. Since ν ≥ 2, there is P such that ||P k
+,−|| = ν,

Pik = 1, Pi0k = −1, and ||P k
+|| = 1 (so ||P k

−|| = ν − 1). Then by i’s power W (k), fk (P ) = 1.
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Hence by i0’s power W 0 (k), q0− (ν) > ν − 1, that is, q0− (ν) ≥ ν. Conversely, if q0− (ν) ≥ ν,
then using the same P as above and i0’s power W 0 (k), we have fk (P ) = 1. This means, by
i’s power W (k), q+ (ν) ≤ 1. Thus q+ (ν) = 1.
Claim 3. Assume that W,W 0 ∈ Wf and for some k ∈ M , W1 (k) 6= W 0

1 (k). Let q (·) ≡
W2 (k) and q0 (·) ≡W 0

2 (k). Then for each ν ∈ {1, . . . , n− 1},

(i) q0 (ν) ≥ 1 ⇒ q0 (ν) = q0+ (ν) ;
(ii) q0 (ν) = 0 ⇔ q0+ (ν) = 1 and q

0
− (ν) = ν + 1 .

Proof. Let i ≡W1 (k) and i0 ≡W 0
1 (k).

Part (i). Suppose q0 (ν) ≥ 1. If q0 (ν) = ν + 1, then for each P with ||P k
+,−|| = ν,

Pik = 0 and Pi0k = 1, by i’s power W (k), fk (P ) = −1. Thus by i0’s power W 0 (k),
q0+ (ν) = ν + 1. If q0 (ν) ≤ ν, there exists P such that ||P k

+,−|| = ν, Pik = 0, Pi0k = 1,
and ||P k

+|| = q0 (ν) (such P exists because 1 ≤ q0 (ν) ≤ ν ≤ n − 1). Then by W (k),
fk (P ) = 1. And by W 0 (k), q0+ (ν) ≤ q0 (ν). Thus if q0 (ν) = 1, q0+ (ν) = 1. Suppose
q0 (ν) ≥ 2. In this case, if q0+ (ν) < q0 (ν), there exists P with ||P k

+,−|| = ν, Pik = 0, Pi0k = 1,
and q0+ (ν) ≤ ||P k

+|| < q0 (ν) (such P exists because q0 (ν) ≥ 2). Then by W 0 (k), fk (P ) = 1
and by W (k), fk (P ) = −1, which is a contradiction.
Part (ii). Suppose q0 (ν) = 0. Consider P such that ||P k

+,−|| = ν, Pik = 0, Pi0k = 1, and
||P k

+|| = 1. By W (k), fk (P ) = 1. Then by W 0 (k), q0+ (ν) ≤ 1. Thus q0+ (ν) = 1.
Next consider P such that ||P k

+,−|| = ν, Pik = 0, Pi0k = −1, and ||P k
−|| = ν. By W (k),

fk (P ) = 1. Then by W 0 (k), q0− (ν) > ν. Thus q0− (ν) = ν + 1.
To prove the converse, suppose q0+ (ν) = 1 and q

0
− (ν) = ν+1. If P is such that ||P k

+,−|| =
ν, Pik = 0, Pi0k = −1, and ||P k

−|| = ν, then by W 0 (k), fk (P ) = 1. Thus by W (k),
q0 (ν) ≤ 0.
Claim 4. Assume that W,W 0 ∈ Wf and for some k ∈ M , W1 (k) 6= W 0

1 (k). Let q (·) ≡
W2 (k) and q0 (·) ≡ W 0

2 (k). Then for each ν ∈ {3, . . . , n}, q+ (ν) = q0+ (ν) and q− (ν) =
q0− (ν) .

Proof. Let i ≡W1 (k) and i0 ≡W 0
1 (k).

We first show q+ (ν) = q0+ (ν). If both numbers are greater than or equal to 2, the result
follows fromClaim 1. Suppose q+ (ν) = 1. Then by Claim 2, q0− (ν) ≥ ν. If q− (ν) 6= q0− (ν) (≥
ν ≥ 3), then q− (ν) = 1 (because otherwise, by Claim 1, q− (ν) = q0− (ν)). Let P be such that
||P k

+,−|| = ν, Pik = Pi0k = −1 and ||P k
−|| = 2. Since q− (ν) = 1 < ||P k

−|| < 3 ≤ ν ≤ q0− (ν),
then by W (k), fk (P ) = 1 and by W 0 (k), fk (P ) = −1, which is a contradiction. Therefore
q− (ν) = q0− (ν) ≥ ν. Then by Claim 2, q0+ (ν) = 1.
We next show q− (ν) = q0− (ν). If both numbers are greater than or equal to 2, the

result follows from Claim 1. Suppose q− (ν) = 1. Then by Claim 2, q0+ (ν) ≥ ν. Since
q+ (ν) = q0+ (ν) ≥ ν, by Claim 2 again, q0− (ν) = 1.

Claim 5. Assume that W,W 0 ∈ Wf and for some k ∈ M , W1 (k) 6= W 0
1 (k). Let q (·) ≡

W2 (k) and q0 (·) ≡W 0
2 (k). Then for each ν ∈ {0, . . . , n−2}, q0 (ν) = q00 (ν) and when n ≥ 4,

q0(n− 1) = q00(n− 1).

18



Proof. Let i ≡W1 (k) and i0 ≡W 0
1 (k). Let ν ∈ {0, . . . , n−2}. Suppose q0 (ν) 6= q00 (ν), say,

q0 (ν) < q00 (ν). Since ν ≤ n− 2 and q0 (ν) ≤ ν (note q0 (ν) < q00 (ν) ≤ ν + 1), then there is
P be such that Pik = Pi0k = 0, ||P k

+,−|| = ν, and ||P k
+|| = q0 (ν). Then by W (k), fk (P ) = 1

and by W 0 (k), fk (P ) = −1, which is a contradiction.
Finally, q0 (n− 1) = q00 (n− 1) follows from Claim 3 and the fact that q+ (n− 1) =

q0+ (n− 1) and q− (n− 1) = q0− (n− 1), which holds by Claim 4 (here we need the assumption
of n ≥ 4 in order to have n− 1 ≥ 3).
Claim 6. Assume that W,W 0 ∈ Wf and for some k ∈ M , W1 (k) 6= W 0

1 (k). Let q (·) ≡
W2 (k) and q0 (·) ≡W 0

2 (k). Then for each ν ∈ {1, . . . , n− 1},

q− (ν) = 1 ⇔ q00 (ν) ≥ ν .

Proof. Let i ≡ W1 (k) and i0 ≡ W 0
1 (k). Let ν ∈ {1, . . . , n− 1}. Suppose q− (ν) = 1. Let P

be such that ||P k
+,−|| = ν, Pik = −1, Pi0k = 0, and ||P k

+|| = ν − 1 (so ||P k
−|| = 1). By W (k),

fk (P ) = −1. Thus by W 0 (k), q00 (ν) > ν − 1, that is, q00 (ν) ≥ ν.
Suppose q00 (ν) ≥ ν. Consider the same P as above. By W 0 (k), fk (P ) = −1. Thus by

W (k), q− (ν) ≤ 1 and so q− (ν) = 1.
Lemma 2. Assume that W,W 0 ∈ Wf and for some k ∈ M , W1 (k) 6= W 0

1 (k). Let q (·) ≡
W2 (k) and q0 (·) ≡ W 0

2 (k). Then for each ν ∈ {0, 1, . . . , n}, if ν ≥ 1, q+ (ν) = q0+ (ν) and
q− (ν) = q0− (ν); if ν ≤ n− 1, q0 (ν) = q00 (ν).

Proof. Let i ≡ W1 (k) and i0 ≡ W 0
1 (k). By Claims 4 and 5, we only need to show that for

each ν ∈ {1, 2}, q+ (ν) = q0+ (ν) and q− (ν) = q0− (ν).
Consider ν = 2. Then q0 (ν) = q00 (ν) by Claim 5. If q0 (ν) = 0, then by Claim 3,

q0+ (ν) = 1 = q+ (ν). If q0 (ν) = q00 (ν) ≥ 1, then applying (i) of Claim 3 twice, q00 (ν) = q+ (ν)
and q0 (ν) = q0+ (ν). Thus q+ (ν) = q0+ (ν).
We next show q− (ν) = q0− (ν). If both numbers are greater than or equal to 2, the

result follows from Claim 1. Suppose q− (ν) = 1. Then by Claim 2, q0+ (ν) ≥ ν. Since
q+ (ν) = q0+ (ν) ≥ ν, then by Claim 2 again, q0− (ν) = 1.
Now consider ν = 1. By Claim 5, q0 (1) = q00 (1) . Suppose q0 (1) = q00 (1) ≥ 1. Then

by Claim 3, q+ (1) = q0+ (1) . And by Claim 6, q− (1) = q0− (1). Suppose q0 (1) = q00 (1) = 0.
Then by Claim 3, q+ (1) = q0+ (1) = 1 and q− (1) = q0− (1) = 2.

Claim 7. Assume that W,W 0 ∈ Wf and for some k ∈ M , W1 (k) 6= W 0
1 (k). Let q (·) ≡

W2 (k) and q0 (·) ≡ W 0
2 (k). Then for each ν ∈ {1, . . . , n}, q+ (ν) + q0− (ν) > ν (and q0+ (ν) +

q− (ν) > ν).

Proof. The inequalities hold trivially for ν = 1.
Let ν ∈ {2, . . . , n}. Let i ≡ W1 (k) and i0 ≡ W 0

1 (k). Suppose by contradiction q+ (ν) +
q0− (ν) ≤ ν. Then q+ (ν) < ν or q0− (ν) < ν. We consider the former case and skip the same
proof for the latter case.
Suppose q+ (ν) < ν. Then there exists P ∈ PTri be such that Pik = 1, Pi0k = −1,

||P k
+,−|| = ν, and ||P k

+|| = q+ (ν) (such P exists because ν ≥ 2, q+ (ν) < ν, and so ||P k
−|| =

ν − q+ (ν) ≥ 1). Then ||P k
−|| = ν − q+ (ν) ≥ q0− (ν). Since Pik = 1, W (k) = (i, q (·)), and

||P k
+|| = q+ (ν), then fk (P ) = 1. On the other hand, since Pi0k = −1, W 0 (k) = (i0, q0 (·)),

and ||P k
−|| = ν − q+ (ν) ≥ q0− (ν), then fk (P ) = −1, contradicting fk (P ) = 1.
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Lemma 3. Assume that W,W 0 ∈Wf and for some k ∈M , W1 (k) 6=W 0
1 (k) and W2 (k) =

W 0
2 (k) = q (·). Then for each ν ∈ {1, . . . , n}, (i) q+ (ν) ≤ ν, q− (ν) ≤ ν, q+ (ν) + q− (ν) =

ν + 1, and when ν ≤ n− 1, q0 (ν) = q+ (ν), or (ii) (q+ (ν) , q− (ν)) ∈ {(ν + 1, 1) , (1, ν + 1)}
and when ν ≤ n− 1, (q+ (ν) , q0 (ν) , q− (ν)) ∈ {(ν + 1, ν + 1, 1) , (1, 0, ν + 1)}.
Proof. Let i ≡W1 (k) and i0 ≡W 0

1 (k). The proof is in the following three steps.

Step 1. For each ν ∈ {2, . . . , n}, if q+ (ν) ≤ ν and q− (ν) ≤ ν, then q+ (ν)+q− (ν) = ν+1
and when ν ≤ n− 1, q0 (ν) = q+ (ν).
By Claim 7, q+ (ν) + q− (ν) ≥ ν + 1. In order to show q+ (ν) + q− (ν) = ν + 1, suppose

q+ (ν) + q− (ν) ≥ ν + 2. Let P ∈ PTri be such that Pik = 1, Pi0k = −1, ||P k
+,−|| = ν,

and ||P k
+|| = ν − q− (ν) + 1 (since q+ (ν) , q− (ν) ≤ ν and q+ (ν) + q− (ν) ≥ ν + 2, then

q+ (ν) , q− (ν) ≥ 2; thus ||P k
+|| = ν − q− (ν) + 1 = q+ (ν) − 1 ≥ 1 and similarly ||P k

−|| =
q− (ν) − 1 ≥ 1; also note ||P k

+,−|| = ν ≥ 2; all these guarantee existence of such P ). Then
||P k

+|| = ν − q− (ν) + 1 = q+ (ν)− 1 < q+ (ν) and ||P k
−|| = q− (ν)− 1 < q− (ν). Since Pik = 1,

W (k) = (i, q (·)), and ||P k
+|| < q+ (ν), then fk (P ) = −1. Since Pi0k = −1,W 0 (k) = (i0, q (·)),

and ||P k
−|| = ν − ||P k

+|| = q− (ν)− 1 < q− (ν), then fk (P ) = 1, contradicting fk (P ) = −1.
We now show that when ν ≤ n−1, q0 (ν) = q+ (ν). By (ii) of Claim 3 and the assumption

q− (ν) ≤ ν, q0 (ν) ≥ 1. Thus the equation follows directly from (i) of Claim 3.

Step 2. For each ν ∈ {2, . . . , n}, (i) if q+ (ν) = ν + 1, q− (ν) = 1; (ii) if q− (ν) = ν + 1,
q+ (ν) = 1.
Suppose q+ (ν) = ν+1. Since ν ≥ 2, there is P such that ||P k

+,−|| = ν, Pik = 1, Pi0,k = −1,
and ||P k

−|| = 1 (so ||P k
+|| = ν − 1). Then by i’s power W (k), fk (P ) = −1. By i0’s power

W 0 (k), q− (ν) = 1. The same argument applies to show the second part.

Step 3. For each ν ∈ {1, . . . n − 1}, (i) q0 (ν) = ν + 1 if and only if q+ (ν) = ν + 1 and
q− (ν) = 1; (ii) q0 (ν) = 0 if and only if q+ (ν) = 1 and q− (ν) = ν + 1.
Part (ii) follows from Claim 3. To prove part (i), suppose q0 (ν) = ν + 1. Consider P

and P 0 such that ||P k
+,−|| = ||P 0k

+,−|| = ν, Pik = P 0
ik = 0, Pi0k = 1, P 0

i0k = −1, ||P k
+|| = ν,

and ||P 0k
− || = 1. By i’s power, fk (P ) = fk(P

0) = −1. Since fk (P ) = −1, by i0’s power,
q+ (ν) > ν and so q+ (ν) = ν + 1. Also since fk (P 0) = −1, by i0’s power, q− (ν) ≤ 1 and so
q− (ν) = 1. The converse is proven using the same argument in the reverse direction.

Step 4. If q0 (1) = 0, then q+ (1) = 1 and q− (1) = 2; if q0 (1) = 1, then q+ (1) = 1
and q− (1) = 1; if q0 (1) = 2, then q+ (1) = 2 and q− (1) = 1. Thus (q+ (1) , q0 (1) , q− (1)) ∈
{(1, 0, 2) , (1, 1, 1) , (2, 2, 1)}.
The two cases for q0 (1) = 0 or 2 are shown in Step 3. The remaining case with q0 (1) = 1

follows from (i) of Claim 3 and Claim 6.

Remark 2. Lemmas 1 and 3 show that the power on an issue can be either exclusive or
non-exclusive. That is, either only one person has the power or everyone has the power.
There is no power shared by more than one but not all persons.

Proof of Proposition 1. The characterization of non-exclusive powers in Proposition 1
follows from Lemmas 1 and 3.

Proof of Proposition 2. Uniqueness of systems of powers in Proposition 2 follows from
Lemmas 2 and 3, and Proposition 1.
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A.2 Proofs of Propositions 3 and 4

Lemma 4. A rule f is represented by a system of powers W (·) satisfying ladder property if
and only if it is represented by an extended system of powers eW (·) such that for each issue
k ∈M , the three index sets in eW2 (k) ≡ (I+,I0,I−) are comprehensive and

(i) (n1, n2) ∈ I0 ⇒ (n1 + 1, n2) ∈ I+;
(ii) (n1, n2) /∈ I− ⇒ (n2, n1 − 1) ∈ I0;
(iii) (n1, n2) /∈ I− ⇒ (n2 + 1, n1 − 1) ∈ I+.

(10)

Proof. Suppose that person i ∈ N has the power on the kth issue associated with a consent-
quotas function q (·). Then we can construct three comprehensive index sets, I+, I0, and I−
as follows. For each s ∈ {+, 0,−}, let Is ≡ {(n1, n2) ∈ I∗ : n1 ≥ qs (n1 + n2)}. Then it is
easy to show that (6) implies (2), comprehensiveness of Is implies (4) of component ladder
property and (10) implies (5) of intercomponent ladder property.
To explain the reverse construction, let I+, I0, and I− be the three comprehensive sets

satisfying (6) and (10). For each ν ∈ {1, . . . , n} and each s ∈ {+, 0,−}, let

qs (ν) ≡
½
min{n1 : (n1, ν − n1) ∈ Is}, if {n1 : (n1, ν − n1) ∈ Is} 6= ∅;
ν + 1, if {n1 : (n1, ν − n1) ∈ Is} = ∅.

Then this consent-quotas function satisfies the two ladder properties because of comprehen-
siveness of I+, I0, and I− and (10). And (6) follows from (2).16

Lemma 5. A rule f represented by an extended system of powers eW (·) satisfies monotonic-
ity if and only if eW (·) satisfies the comprehensiveness property and (10) stated in Lemma 4.
Proof. Let f be a rule represented by an extended system of powers eW . Then clearly
f satisfies independence and so by Proposition 5, f is represented by a profile of decisive
structures (Ck)k∈M .
Assume that f satisfiesmonotonicity. Then all decisive structures in (Ck)k∈M are monotonic.

Let k ∈ K, i ≡ eW1 (k) and (Ik+, Ik0 ,Ik−) ≡ eW2 (k). Then by (6), Ik+ = {(|C1|, |C2|) :
(C1, C2) ∈ Ck and i ∈ C1}, Ik0 = {(|C1|, |C2|) : (C1, C2) ∈ Ck and i 6∈ C1 ∪ C2}, and
Ik− = {(|C2|, |C1|) : (C1, C2) 6∈ Ck and i ∈ C2}. Comprehensiveness of the three index sets
Ik+,Ik0 ,Ik− is a direct consequence of monotonicity of the decisive structure Ck. To show
part (i) of (10), let (n1, n2) ∈ Ik0 . Suppose to the contrary (n1 + 1, n2) 6∈ Ik+. Let P ∈ PTri
be such that Pik = 0, ||P k

+|| = n1, and ||P k
−|| = n2. Then fk (P ) = 1. Let P 0 ∈ PTri have

the same components as P except P 0
ik ≡ 1. Then P 0 ≥ P , ||P 0k+ || = n1 + 1, and ||P k

−|| = n2.
Since (n1 + 1, n2) 6∈ Ik+, fk (P 0) = −1, contradicting monotonicity of f .
To show part (ii) of (10), suppose to the contrary that (n1, n2) /∈ Ik− and (n2, n1−1) 6∈ Ik0 .

Let P ∈ PTri be such that Pik = −1, ||P k
−|| = n1, and ||P k

+|| = n2. Then fk (P ) = 1. Let
P 0 ∈ PTri have the same components as P except P 0

ik ≡ 0. Then P 0 ≥ P , ||P 0k
+ || = n2, and

||P k
−|| = n1 − 1. Since (n2, n1 − 1) 6∈ Ik0 , fk (P 0) = −1, contradicting monotonicity of f .
To show (iii) of (10), suppose to the contrary that (n1, n2) /∈ Ik− and (n2+1, n1−1) 6∈ Ik+.

Let P ∈ PTri be such that Pik = −1, ||P k
−|| = n1, and ||P k

+|| = n2. Then fk (P ) = 1. Let
P 0 ∈ PTri have the same components as P except P 0

ik ≡ 1. Then P 0 ≥ P , ||P 0k
+ || = n2 + 1,

16The proof is available in the earlier version of this article, Ju (2004).
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and ||P k
−|| = n1 − 1. Since (n2 + 1, n1 − 1) 6∈ Ik0 , fk (P 0) = −1, contradicting monotonicity

of f .

To prove the converse, assume that eW satisfies the comprehensiveness property and (10)
stated in Lemma 4. In order to prove monotonicity of f , let P 0 ≥ P and k ∈M be such that
fk (P ) = 1. We only have to show fk (P

0) = 1. Let i ≡ eW (k) and (Ik+,Ik0 ,Ik−) ≡ eW2 (k).
When P 0

ik = Pik, it follows directly from the comprehensiveness condition of the three sets
Ik+,Ik0 ,Ik− that fk (P 0) = 1. There are two remaining cases.

Case 1. Pik = 0 6= P 0
ik and (||P k

+||, ||P k
−||) ∈ Ik0 . Then P 0

ik = 1. Hence ||P 0k
+ || ≥ ||P k

+||+ 1
and ||P 0k

− || ≤ ||P k
−||. By comprehensiveness of Ik+ and part (i) of (10), (||P 0k+ ||, ||P 0k

− ||) ∈ Ik+.
Therefore fk (P 0) = 1.

Case 2. Pik = −1 6= P 0
ik and (||P k

−||, ||P k
+||) /∈ Ik−. Then either P 0

ik = 0 or P
0
ik = 1. If

P 0
ik = 0, ||P 0k

+ || ≥ ||P k
+|| and ||P 0k

− || ≤ ||P k
−|| − 1. Then by comprehensiveness of Ik− and

part (ii) of (10), (||P 0k
+ ||, ||P 0k

− ||) ∈ Ik0 . Thus, fk (P 0) = 1. If P 0
ik = 1, ||P 0k

+ || ≥ ||P k
+||+ 1 and

||P 0k
− || ≤ ||P k

−||−1. Then by comprehensiveness of Ik− and part (iii) of (10), (||P 0k
+ ||, ||P 0k

− ||) ∈
Ik+. Therefore fk (P 0) = 1.
Proof of Proposition 3. Proposition 3 follows directly from Lemmas 4 and 5.

Proof of Proposition 4. Consider a rule f represented by a system of powers W . Let
λ (·) ≡ W1 (·). Let π : N → N be a permutation on N and δ : M → M a permutation
on M such that for each i ∈ N , δ maps λ−1 (i) onto λ−1 (π (i)). Then because of the
ontoness property of δ, i ∈ N and π (i) are associated with the same number of issues
under λ. Thus by horizontal equality, for each k ∈ λ−1 (i), i’s power on the kth issue and
π (i)’s power on the δ (k)th issue are associated with the same consent-quotas function, that
is, W2 (k) = W2 (δ (k)). Denote the common consent-quotas function by q (·). For each
P ∈ PTri, ||P δ(k)

+ || = ||δπP k
+|| and ||P δ(k)

− || = ||δπP k
−||. Thus, q(||P δ(k)

+,− ||) = q(||δπP k
+||) and

δ
πPik = Pπ(i)δ(k). Therefore, fk

¡
δ
πP
¢
= fδ(k) (P ). This shows that f satisfies symmetric

linkage associated with λ. The converse can be proven similarly.

A.3 Proofs of Proposition 7 and Theorem 1

Proof of Proposition 7. Using the same argument as in the proof of Proposition 4, we
can show that a rule represented by an extended system of powers satisfies symmetric linkage
if and only if the extended system satisfies horizontal equality. Clearly, any rule represented
by an extended system of powers satisfies independence.
To prove the converse, consider a rule f satisfying independence and symmetric linkage.

Then by Proposition 5, f is represented by a profile of decisive structures (Ck)k∈M . By
symmetric linkage, there exists λ : M → N such that f satisfies λ-symmetry. We identify
an extended system of powers of f and complete the proof in two steps.

Step 1. For each pair i, j ∈ N with |λ−1 (i) | = |λ−1 (j) |, each k ∈ λ−1 (i), each l ∈
λ−1 (j), and each (C1, C2) , (C 0

1, C
0
2) ∈ C∗ with |C1∩{i}| = |C 0

1∩{j}| and |C2∩{i}| = |C 0
2∩{j}|

(or equivalently, [i ∈ C1 ⇔ j ∈ C 0
1] and [i ∈ C2 ⇔ j ∈ C 0

2]), if |C1| = |C 0
1| and |C2| = |C 0

2|,
then

(C1, C2) ∈ Ck ⇔ (C 0
1, C

0
2) ∈ Cl .
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Let i, j ∈ N , k ∈ λ−1 (i), l ∈ λ−1 (j), and (C1, C2) , (C 0
1, C

0
2) ∈ C∗ be given as above.

Consider the case i ∈ C1 and j ∈ C 0
1 (the proofs for the other cases are similar). Suppose

(C1, C2) ∈ Ck. Let P be such that N(P k
+) ≡ C1 and N(P k

−) ≡ C2. So fk (P ) = 1. Since
|C1| = |C 0

1| and |C2| = |C 0
2|, there is a permutation π on N such that π (i) = j, π (j) = i,

π (C1) = C 0
1, and π (C2) = C 0

2. Since |λ−1 (i) | = |λ−1 (j) |, there is a permutation δ on
M such that δ

¡
λ−1(j)

¢
= λ−1(i), δ(λ−1(i)) = λ−1(j), δ (l) = k, and for all other k0 ∈

M\[λ−1(i)∪ λ−1(j)], δ (k0) = k0. Then N(δπP
l
+) = π−1(N(P δ(l)

+ )) = π−1 (C1) = C 0
1. Similarly,

N(δπP
l
−) = C 0

2. By λ-symmetry, fl
¡
δ
πP
¢
= fδ(l) (P ) = fk (P ) = 1. Therefore, (C 0

1, C
0
2) ∈ Cl.

The proof of the opposite direction is similar.

One notable implication of Step 1 is that for each i ∈ N and each pair k, l ∈ λ−1 (i),
Ck = Cl.

Step 2. Rule f is represented by an extended system of powers satisfying horizontal
equality.

Let N/λ be the partition of N such that for each pair i, j ∈ N , i and j are in the same
set G ∈ N/λ if and only if |λ−1 (i) | = |λ−1 (j) |. For each G ∈ N/λ, let KG ≡ {k ∈ M :
λ(k) ∈ G} be the set of issues linked to a person in G under λ. Then M/λ ≡ {KG :
G ∈ N/λ} is a partition of M . For each K ∈ M/λ, pick k ∈ K and let i ≡ λ (k). Let
IK+ ≡ {(|C1|, |C2|) : (C1, C2) ∈ Ck and i ∈ C1}, IK0 ≡ {(|C1|, |C2|) : (C1, C2) ∈ Ck and
i 6∈ C1 ∪ C2}, and IK− ≡ {(|C2|, |C1|) : (C1, C2) 6∈ Ck and i ∈ C2}. For each l ∈ K ∈ M/λ,
let eW2 (l) ≡ (IK+ ,IK0 , IK− ). Let eW1 (·) ≡ λ and eW (·) ≡ (eW1 (·) ,eW2 (·)). Then by
construction, eW (·) satisfies horizontal equality. We next show that for each P ∈ PTri, each
K ∈M/λ, and each l ∈ K, if λ (l) = j ∈ N ,

when Pjl = 1, fl (P ) = 1 ⇔ (||P l
+||, ||P l

−||) ∈ IK+ ; (11)

when Pjl = 0, fl (P ) = 1 ⇔ (||P l
+||, ||P l

−||) ∈ IK0 ; (12)

when Pjl = −1, fl (P ) = −1 ⇔ (||P l
−||, ||P l

+||) ∈ IK− . (13)

When j = i, Step 1 says that the decision on the kth issue relies on person i’s opinion, the
number of agreeing persons, and the number of disagreeing persons. Therefore, since for
each l ∈ λ−1 (i), Cl = Ck, then (11)-(13) hold when j = i. When j ∈ G\{i}, Step 1 says that
for each l ∈ λ−1 (j), the decision on the lth issue is made symmetrically to the decision on
the kth issue. Therefore, (11)-(13) hold also for j and l.

Proof of Theorem 1. Theorem 1 follows directly from Propositions 3, 4 and 7, and Lem-
mas 4 and 5.

A.4 Proofs of Theorems 5 and 6

Proof of Theorem 5. Let λ : M → N be the exogenous linkage. Let f be a rule over PTri
(or RTri, recall that we will treat each opinion matrix as a profile of trichotomous preference
relations) satisfying the three axioms (the proof for PDi or RDi is essentially the same).
Without loss of generality, we assume N ⊆ M (since the number of objects linked to a
person is constant across persons, we may label at least one object by the label of the person
linked to it) and for each i ∈ {1, . . . , n}, λ (i) = i. By Proposition 7 and the assumption on
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P ≡


1 0 −1 −1 1 1
1 1 0 −1 −1 1
1 1 1 0 −1 −1
−1 1 1 1 0 −1
−1 −1 1 1 1 0
0 −1 −1 1 1 1

 ;
δ
πP =


1 1 0 −1 −1 1
0 1 −1 −1 1 1
1 1 1 0 −1 −1
1 −1 1 1 0 −1
−1 −1 1 1 1 0
−1 0 −1 1 1 1


Figure 1: Construction of P in the proof of Theorem 5. An example with |N | = |M | = 6,
t1 = 3, t2 = 2, i = 1, and j = 2. Let π : N → N be the transposition of 1 and 2 and
δ : M →M the same transposition.

λ, there exist three index sets I+, I0, and I− such that for each P ∈ PTri and each k ∈ M ,
if i ≡ λ (k),

(i) when Pik = 1, fk (R) = 1⇔
¡||P k

+||, ||P k
−||
¢ ∈ I+;

(ii) when Pik = 0, fk (R) = 1⇔
¡||P k

+||, ||P k
−||
¢ ∈ I0;

(iii) when Pik = −1, fk (R) = −1⇔
¡||P k

−||, ||P k
+||
¢ ∈ I−. (14)

Claim 1. For each s ∈ {+, 0,−},
{(t1, t2) ∈ I∗ : t1 > t2} ⊆ Is;
{(t1, t2) ∈ I∗ : t1 < t2} ∩ Is = ∅. (15)

Proof. Let (t1, t2) ∈ I∗ be such that t1 > t2. Suppose by contradiction (t1, t2) /∈ I+. Let
[0] ≡ n. For each l ∈ {1, . . . , n}, let [l] ≡ l, [n + l] ≡ l, and [−l] ≡ [n − l]. Let P be the
opinion matrix such that for each i ∈ {1, . . . , n},

l ∈ {0, 1, . . . , t1 − 1} ⇒ P[i+l]i = 1 ;

l = t1, . . . , t1 + t2 − 1 ⇒ P[i+l]i = −1 ;
l = t1 + t2, . . . , n ⇒ P[i+l]i = 0 ;

and for each k ∈ M\{1, . . . , n} and each i ∈ N , Pik = −1. See Figure 1 for an illustration
of P . Then for each i ∈ {1, . . . , n}, there are t1 persons, {[i], [i + 1], . . . , [i + t1 − 1]}, who
have the positive opinion on the ith issue, t2 persons, {[i + t1], . . . , [i + t1 + t2 − 1]}, who
have the negative opinion, and n− t1 − t2 remaining persons with the null opinion. Hence
for each i ∈ {1, . . . , n}, ||P i

+|| = t1 and ||P i
−|| = t2. Let i, j ∈ {1, . . . , n}. Let π : N → N

and δ : M → M be two permutations on N and on M transposing i and j. Then the ith

and the jth columns in δ
πP are obtained by making an one-to-one and onto switch between

the ith and the jth columns in P , not necessarily preserving the row positions of entries.17

Thus, ||δπP i
+|| = ||P j

+||, ||δπP i
−|| = ||P j

+||, ||δπP j
+|| = ||P i

+||, and ||δπP j
−|| = ||P i

+||. By symmetry,
fi
¡
δ
πP
¢
= fj (P ) and fj

¡
δ
πP
¢
= fi (P ). Since ||P i

+|| = ||P j
+|| and ||P i

−|| = ||P j
−||, then

||P i
+|| = ||δπP j

+||, ||P i
−|| = ||δπP i

−||, ||P j
+|| = ||δπP j

+||, and ||P j
−|| = ||δπP j

−||. So fi (P ) = fi
¡
δ
πP
¢

17Note that Pii and Pji in the ith column are switched into Pjj and Pij in the jth column respectively.
Other entries in the ith column are switched into the entries in the jth column in the same rows.
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and fj (P ) = fj
¡
δ
πP
¢
. Hence fi (P ) = fj(P ). Since (t1, t2) /∈ I, fN (P ) = (−1, . . . ,−1).

On the other hand, by Pareto efficiency, fM\N = (−1, . . . ,−1). For each i ∈ N , let Ui (·)
be the representation of the trichotomous preference relation Pi. Then for each i ∈ N ,
Ui (f (P )) = 0. Let x be such that xN ≡ (1, . . . , 1) and xM\N ≡ (−1, . . . ,−1). Then for each
i ∈ N , Ui (x) = t1 − t2 > 0, contradicting Pareto efficiency.
Let (t1, t2) ∈ I∗ be such that t1 < t2. Suppose by contradiction (t1, t2) ∈ I+. Then using

the same argument as above, we show fN (P ) = (1, . . . , 1) and fM\N (P ) = (−1, . . . ,−1) .
Let x ≡ (−1, . . . ,−1). Then for each i ∈ N , Ui (f (P )) = t1 − t2 < 0 = Ui (x), contradicting
Pareto efficiency.
Similar arguments can be used to prove the same properties for I0 and I−. ¨
Note that the properties stated in (15) imply comprehensiveness of the three index sets.

Finally, for each s ∈ {+, 0,−}, let qs (ν) ≡ min{t1 : (t1, ν − t1) ∈ Is} for each ν. Then
(15) implies (7) and (8). Because of comprehensiveness of the three index sets, (14) implies
(2).

Proof of Theorem 6. Let f be a rule over PTri satisfying the four axioms (the proof for
PDi orRDi is essentially the same). By Proposition 7, f is represented by an extended system
of powers eW (·). Then by neutrality, for each pair l, k ∈M , eW2 (l) = eW2 (k). Thus there
exist three index sets I+, I0, and I− such that for each P ∈ PTri and each k ∈M , if i ≡ λ (k),

(i) when Pik = 1, fk (P ) = 1⇔
¡||P k

+||, ||P k
−||
¢ ∈ I+;

(ii) when Pik = 0, fk (P ) = 1⇔
¡||P k

+||, ||P k
−||
¢ ∈ I0;

(iii) when Pik = −1, fk (P ) = −1⇔
¡||P k

−||, ||P k
+||
¢ ∈ I−. (16)

Using essentially the same argument as in the proof of Theorem 5, we can show that f is
represented by a quasi-plurality system of powers. Because of neutrality, the system is either
non-exclusive or monocentric.
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