Apples and Oranges... or Splitting Hairs?
Note: We skipped a year of magazine production in 2002. Now we’re back, this time electronically.
Trafficware

Synchro plus SimTraffic
✓ Signal Timing Optimization
✓ Traffic Simulation & Animation
✓ Capacity Analysis

Professional Reports and Presentations

Present Animated Traffic on an Aerial Photo

View Data by...

Location,

Timings,

or Both.

Professional Reports

#1 Signal Timing Software
#1 Traffic Simulation Software

For More Information:
Phone: (510) 526-5891
Fax: (510) 526-5199
www.trafficware.com

© 2002 Trafficware Corporation. All Rights Reserved. Trafficware, Synchro, and SimTraffic are registered trademarks of the Trafficware Corporation.
April 22-25, 2003
Course: Microcomputer Applications in Signal Timing Using TEAPAC, PASSER, TRANSYT and CORSIM
Evanston, IL
Strong Concepts and Northwestern Univ. Center for Public Safety
Phone: (847) 564-0386 or (800) 323-4011

May 13-15, 2003
Intertraffic Eurasia
Istanbul, Turkey
Register on line at www.intertraffic.com

May 18-23, 2003
Australian Road Research Board (ARRB) 21st Annual Conference
Cairns, Queensland, Australia
E-mail: irenet@arrb.com.au

May 19-22, 2003
Intelligent Transportation System America (ITSA) 13th Annual meeting and Expo
Minneapolis, Minnesota
Register on line at www.itsa.org
Phone: (202) 484-4847
E-mail: tdiffley@itsa.org

June 2-3, 2003
Designing Optimized Traffic Signals and Systems
Using TEAPAC, PASSER and TRANSYT
Corvallis, OR
Call Strong Concepts, (847) 564-0386

July 15, 16 & 21, 2003
aaSIDRA for Roundabouts (3 one-day courses)
Raleigh, NC
Call ITRE (NC State), (919) 515-8580

July 16 & 17, 2003
aaSIDRA for Signalized Intersections
Raleigh, NC
Call ITRE (NC State), (919) 515-8580

July 31, 2003
aaSIDRA for Roundabouts
San Diego, CA
Call CITS (SD State), (619) 594-0164

August 24-27, 2003
ITE 2003 Annual Meeting and Exhibit
Seattle, WA
Register on-line at www.ite.org

August 24-27, 2003
American Public Works Association Annual Congress
San Diego, CA
Register on-line at www.apwa.net

March 28-31, 2004
ITE 2004 Annual Technical Meeting and Exhibit
Irvine, CA
Register on-line at www.ite.org
Introducing DYNASMART-P

DYNASMART-P is one of two state-of-the-art dynamic traffic operations planning tools developed under the Federal Highway Administration’s Dynamic Traffic Assignment (DTA) research project. It is currently in beta testing.

DYNASMART-P supports transportation network planning and traffic operations decisions in ITS and non-ITS environments through the use of simulation-based dynamic traffic assignment. This tool combines: 1) dynamic network assignment (or demand) models, used primarily in conjunction with demand forecasting procedures for planning applications, and 2) traffic simulation (or supply) models, used primarily for traffic operational studies.

DYNASMART-P models flows in a traffic network resulting from the decisions of individual travelers seeking best paths over a given planning horizon. It overcomes many of the limitations of static tools used in current practice by increasing the types of alternative measures that may be represented and evaluated, and broadening the policy questions that planning agencies can address.

DYNASMART-P requires input data used by most traditional traffic assignment and simulation models representing networks and traffic flows. The input data vary with the network being analyzed and the level of detail required by the user. Complexity of the network could range from a linear freeway network to an integrated network with High-Occupancy Vehicle (HOV) lanes, High-Occupancy Toll (HOT) lanes, ramp metering, transit services, possibly incidents and signal controlled intersections on surface streets.

DYNASMART-P can produce a variety of results to assist users in performing detailed traffic analysis. The output report contains a wide range of measures of effectiveness commonly used by traffic engineers for analyses, such as volumes, speeds, travel times, delays, etc. DYNASMART-P also produces a vehicle trajectory file and the means to view simulation results and other characteristics through various graphics formats, both static and animated.

DYNASMART-P’s built-in features can be used to evaluate complex strategic and operational network planning decisions. They can also be used to produce more real-time traffic management strategies.

pc-trans now an e-zine

In case you haven’t heard, PC-TRANS has gone electronic. Our magazine, pc-trans, and our software catalog will be available only through our web site at www.kutc.ku.edu/pctrans.

We will notify our customers by e-mail when each new issue is available. To receive our notices, we need your e-mail address. Please take a minute to send a message to pctrans@ku.edu with “pctrans” as the title. In your message, simply say “add to list.”

Don’t miss out on the latest news on our transportation software. Send us a message today! (Rest assured: We will not release our e-mail list to anyone for any reason.)

This move to the web allows us to be more current and accurate with our information, to have it available worldwide 24 hours a day, and save money and natural resources.

—Mehrdad Givechi, PC-TRANS manager

New Web Site for Nation’s Water Data

The U.S. Geological Survey (USGS) has unveiled its new, online WaterWatch website which gives visitors an instantaneous picture of water conditions nationwide in near real-time. The entire Nation’s current streamflow conditions, including high flood-flows and low drought-flows are depicted on maps with color-coded dots representing conditions at about 3,000 streamgages. The WaterWatch website is http://waterdata.usgs.gov/nwis/.

WaterWatch has a point-and-click interface allowing users to retrieve maps and graphs of real-time stage and discharge data for individual stations. From the National map, you can click on a state to find state data and click further to find near real-time data at an individual gauge.

WaterWatch also serves as a geo-spatial front end to NWIS-Web, the USGS online National Water Information System that provides access to real-time and historical surface-water, groundwater, and water-quality data. The NWIS-Web address is http://waterdata.usgs.gov/nwis/.

WaterWatch maps and graphs are organized into three distinct categories: real-time, daily, and 7-day average streamflow. This provides users with a broad perspective on short-term and long-term streamflow conditions and variations. The latter category is particularly useful for identifying regions undergoing prolonged wet and dry spells.

TSIS/CORSIM 5.1

At the time this publication was being assembled, the new version of TSIS/CORSIM (5.1) was released by the Federal Highway Administration.

For more information on its availability, contact Mehrdad Givechi at PC-TRANS at (785) 864-5655.

continued on page 7
I’m back, and in a new e-format to boot. While not a lot has happened in the AEC CADD world since my last column, there are one or two trends that truly concern me: the continuing consolidation within the industry and the industry’s promotion of XML for data exchange.

Over the last few years we have seen Intergraph sell off its AEC product lines to Bentley. We have seen Bentley gobble up products like Descartes, Inroads and GEOPAK. On the other side of the CADD world, AutoDesk has been buying up its share of the software world with the purchase of Softdesk, Revit and most recently CACIE. So where we once had heated competition between products we now have very few competing products left. For example, let’s take a quick look at how industry consolidation has affected highway design software.

Three years ago there were at least a half dozen competing highway design software packages—InRoads, GEOPAK, CACIE, Softdesk, AutoCad Land Development, IGRDS, MDX Roads—and those are just the ones that I can name off the top of my head. Today it’s a different story. Bentley Systems now own both GEOPAK and

Consolidation pretty much stifles competition and, in my opinion, makes the remaining vendors less concerned with their customers and more concerned with their stock price.

InRoads, Autodesk owns CACIE and Softdesk. IGRDS, which was an AASHTO product, has been sunset. That leaves MDX as the only product that hasn’t been bought out—yet.

Why be concerned? Well first, it pretty much stifles competition and, in my opinion, makes the remaining vendors less concerned with their customers and more concerned with their stock price.

now controlling approximately 94 percent of the highway design market (by my calculations), and Autodesk the rest, I fear we will see little “real” innovation over the next few years.

One thing I would recommend is hold your vendor’s feet to fire. And if they don’t deliver, “burn em” a bit!

Now onto the topic of XML, and the industry’s effort to adopt it as a data transfer standard. Over the years the biggest problem within the AEC industry has been data exchange. Every product regardless of vendor basically has used a proprietary format to store data. This is starting to change with the coming of the web, and the adoption of Visual Basic by several vendors.

The latest big thing seems to be XML, and I think this could go a long way to solving our data exchange problems. (See links at end of column if you want to learn more about XML.) Even Microsoft is talking about adopting XML for their next release of Office. In the AEC world though, I see a couple of roadblocks to XML’s implementation; the first one deals with standards, and the second one is more business oriented.

Roadblock number one is the question of which particular XML standard to adopt. Of course both AutoDesk and Bentley support different ones. Autodesk, MicroSoft and probably the majority of other AEC vendors support LandXML while Bentley has been leaning towards aecXML. I figure LandXML will likely win in the end, but it probably doesn’t matter. Some form of XML will become the defacto standard for AEC data exchange.

But roadblock number two—that is, product consolidation—might derail the whole thing. Once XML frees our design data from proprietary formats, we would be free to choose
the best and cheapest programs for our design needs. In other words the CADD world would once again be a place where vendors would have to compete on features, performance, service and PRICE. Talk about something that scares the hell out of upper management at the Big Two. Come to think of it, buying up the competition makes more sense, doesn’t it?

I hope that gives everyone something to think about. Feel free to let me know what you think by dropping me a line at rjrobinson@charter.net. Since I’m writing this in December, let me wish everyone happy holidays and a prosperous new year.

Rande Robinson works for “a southern department of transportation” in CADD support, training and management. The views presented are Rande’s and are not necessarily those of any department of transportation, organization or pc-trans (although they probably should be).

Visit these sites to learn more about XML

LandXML:
www.landxml.org

ArcXML:
www.aii-na.org/aecxml/mission.php

Other XML links:
www.cadenceweb.com/newsletter/aec/0710_1.html
www.constructech.com/prinresources/back_issues/v2n4/v2n4016b.asp

Newsbriefs, continued from page 5

istic traffic assignment results for planning analyses. The potential applications include:
● Assessing impacts of ITS and non-ITS technologies on the transportation network, such as dynamic message signs, ATIS-equipped vehicles, etc.
● Supporting decision-making for work zone planning and traffic management.
● Evaluating HOV lanes and HOT lanes.
● Evaluating different congestion pricing schemes.
● Planning for special events and emergency situations.
● Analyzing traffic assignment in traditional planning activities.

DYNASMART-P runs on Windows NT 4.0 (service pack 5) or higher. A minimum of 300 MB of the hard drive space 512 MB of RAM are needed to run the model, depending on the size of the network and analysis time period.

DYNASMART-P has been tested with field data from the Knoxville Metropolitan Planning Commission. FHWA is currently conducting a beta test to ensure that the software matches user needs.

Anyone interested is welcome to participate in the beta testing. Contact Henry Lieu at: Henry.Lieu@fhwa.dot.gov for more information about DYNASMART-P or to inquire about participating in the beta testing.

Upon completion of the beta test, FHWA will refine DYNASMART-P and release it to the public.

Visit these sites to learn more about XML

LandXML:
www.landxml.org

ArcXML:
www.aii-na.org/aecxml/mission.php

Other XML links:
www.cadenceweb.com/newsletter/aec/0710_1.html
www.constructech.com/prinresources/back_issues/v2n4/v2n4016b.asp

Newsbriefs, continued from page 5

istic traffic assignment results for planning analyses. The potential applications include:
● Assessing impacts of ITS and non-ITS technologies on the transportation network, such as dynamic message signs, ATIS-equipped vehicles, etc.
● Supporting decision-making for work zone planning and traffic management.
● Evaluating HOV lanes and HOT lanes.
● Evaluating different congestion pricing schemes.
● Planning for special events and emergency situations.
● Analyzing traffic assignment in traditional planning activities.

DYNASMART-P runs on Windows NT 4.0 (service pack 5) or higher. A minimum of 300 MB of the hard drive space 512 MB of RAM are needed to run the model, depending on the size of the network and analysis time period.

DYNASMART-P has been tested with field data from the Knoxville Metropolitan Planning Commission. FHWA is currently conducting a beta test to ensure that the software matches user needs.

Anyone interested is welcome to participate in the beta testing. Contact Henry Lieu at: Henry.Lieu@fhwa.dot.gov for more information about DYNASMART-P or to inquire about participating in the beta testing.

Upon completion of the beta test, FHWA will refine DYNASMART-P and release it to the public.

Visit these sites to learn more about XML

LandXML:
www.landxml.org

ArcXML:
www.aii-na.org/aecxml/mission.php

Other XML links:
www.cadenceweb.com/newsletter/aec/0710_1.html
www.constructech.com/prinresources/back_issues/v2n4/v2n4016b.asp

Newsbriefs, continued from page 5

istic traffic assignment results for planning analyses. The potential applications include:
● Assessing impacts of ITS and non-ITS technologies on the transportation network, such as dynamic message signs, ATIS-equipped vehicles, etc.
● Supporting decision-making for work zone planning and traffic management.
● Evaluating HOV lanes and HOT lanes.
● Evaluating different congestion pricing schemes.
● Planning for special events and emergency situations.
● Analyzing traffic assignment in traditional planning activities.

DYNASMART-P runs on Windows NT 4.0 (service pack 5) or higher. A minimum of 300 MB of the hard drive space 512 MB of RAM are needed to run the model, depending on the size of the network and analysis time period.

DYNASMART-P has been tested with field data from the Knoxville Metropolitan Planning Commission. FHWA is currently conducting a beta test to ensure that the software matches user needs.

Anyone interested is welcome to participate in the beta testing. Contact Henry Lieu at: Henry.Lieu@fhwa.dot.gov for more information about DYNASMART-P or to inquire about participating in the beta testing.

Upon completion of the beta test, FHWA will refine DYNASMART-P and release it to the public.

Visit these sites to learn more about XML

LandXML:
www.landxml.org

ArcXML:
www.aii-na.org/aecxml/mission.php

Other XML links:
www.cadenceweb.com/newsletter/aec/0710_1.html
www.constructech.com/prinresources/back_issues/v2n4/v2n4016b.asp

Newsbriefs, continued from page 5

istic traffic assignment results for planning analyses. The potential applications include:
● Assessing impacts of ITS and non-ITS technologies on the transportation network, such as dynamic message signs, ATIS-equipped vehicles, etc.
● Supporting decision-making for work zone planning and traffic management.
● Evaluating HOV lanes and HOT lanes.
● Evaluating different congestion pricing schemes.
● Planning for special events and emergency situations.
● Analyzing traffic assignment in traditional planning activities.

DYNASMART-P runs on Windows NT 4.0 (service pack 5) or higher. A minimum of 300 MB of the hard drive space 512 MB of RAM are needed to run the model, depending on the size of the network and analysis time period.

DYNASMART-P has been tested with field data from the Knoxville Metropolitan Planning Commission. FHWA is currently conducting a beta test to ensure that the software matches user needs.

Anyone interested is welcome to participate in the beta testing. Contact Henry Lieu at: Henry.Lieu@fhwa.dot.gov for more information about DYNASMART-P or to inquire about participating in the beta testing.

Upon completion of the beta test, FHWA will refine DYNASMART-P and release it to the public.

Visit these sites to learn more about XML

LandXML:
www.landxml.org

ArcXML:
www.aii-na.org/aecxml/mission.php

Other XML links:
www.cadenceweb.com/newsletter/aec/0710_1.html
www.constructech.com/prinresources/back_issues/v2n4/v2n4016b.asp
What’s New from STRONG CONCEPTS?
SIGNAL2000 Version 2 and WARRANTS2000
With the Proven Performance of WinTEAPAC

☑ Over 25 years of development and use boasts unparalleled maturity
☑ True Windows interface brings simplicity and familiarity
☑ World-wide acceptance and use, including 6 continents, all 50 states in USA and majority of state DOTs
☑ On-screen user guide; context-sensitive help; detailed index
☑ Unique visual graphical interface: easiest to understand + most efficient to use = save your time and $$$
☑ Easy phasing entry; unsurpassed import/export features
☑ Free updates using easy internet downloads

Also Available from PC-Trans

The only package of traffic software for Windows providing complete integration of 2000 HCM SIGNAL2000 optimization, simple bandwidth optimization, TRANSYT system optimization, CORSIM/NETSIM system animation, site impact analysis, traffic count analysis and 2000 MUTCD signal & multi-way stop warrants! For proven performance, contact:

Strong Concepts
“First in Integrated Traffic Software”
25 Years

Strong Concepts
1249 Shermer Rd, Ste 100
Northbrook, Illinois
U.S.A. 60062-4540
e-mail: info@StrongConcepts.com
phone: (847) 564-0386 fax: 564-0394
Trafficware’s SimTraffic is one of the newer traffic simulation programs available to transportation professionals. The program is user friendly and offers capabilities similar to the FHWA-developed CORSIM. In 2001 SimTraffic and CORSIM were updated, coincidentally both to version 5.0. The updates include many useful enhancements. Since these updates a question many transportation professionals have been asking is: “Which of these two programs best suits each of the various types of traffic analyses we conduct?”

HDR Engineering, Inc., has conducted numerous traffic analyses in the last few years using both CORSIM and SimTraffic in an effort to compare these two programs and answer this question. Our analyses include a variety of facility types such as small intersection grids, arterial street corridors, downtown grids, interchanges and freeway systems. We will examine three such studies in this article.

In a previous article in pc-trans [“CORSIM and Sim Traffic: What’s the Difference?” Winter/Spring 2001], we stressed the importance of calibrating traffic models to field conditions. SimTraffic and CORSIM have different factors that can be used for calibration. Calibration steps for the case studies here ranged from observing queues lengths in the field to videotaping traffic operations during the peak hour and conducting travel time runs.

Isolated Intersection Case Study
Our company conducted a traffic impact study for a hospital expansion project in Grand Junction, Colorado (Figure 1). We simulated the operational analysis to communicate more effectively with decision-makers and to address concerns about pedestrian traffic adjacent to the hospital site.

Eight intersections were included in the network to accurately simulate arrival conditions at the primary study intersection at North 7th Street and Patterson Road (Figure 2). Both of

For some types of traffic analysis, SimTraffic and CORSIM are clearly different.
these streets are classified as major collectors. Our primary concerns when evaluating this intersection were operational capacity and the impact of pedestrians. Hospital employee parking is located on the east side of North 7th Street while the hospital building is located west of North 7th Street. On average, 91 pedestrians cross between the parking area and the main hospital building during the peak traffic hour. Pedestrian traffic was observed to slow eastbound Patterson Road traffic.

To validate and calibrate the simulation models to existing conditions, we obtained several pieces of data, including:

- peak hour turning movement volumes
- peak hour pedestrian volumes
- truck percentages
- signal timing information

saturation flow rates
queue lengths

The engineer’s field observations were also helpful in determining which simulation settings should be adjusted during the calibration process. It was clear that vehicle queuing along the eastbound approach of Patterson Road should be a key calibration measure. Pedestrian activity across the south leg of North 7th Street caused considerable vehicle queuing. Typical peak hour queue lengths on the eastbound approach were 450 to 600 feet.

CORSIM Analysis

The initial CORSIM simulation results had lower delay than what was observed in the field, particularly on the eastbound approach to the intersection. The other intersection approaches were compared to field data and were close to actual conditions. The delay differences on the eastbound approach were linked to the pedestrian conflict.

SimTraffic. SimTraffic’s developer is Trafficware. It operates as companion product for the popular macroscopic analysis program, Synchro. Nearly all of the basic coding is accomplished through Synchro. SimTraffic is a stochastic model with various driver and vehicle types and can model both surface street and freeway operations, similar to CORSIM. Synchro allows the user to import a JPG, BMP, or DXF file for a background image. This image also transfers to the SimTraffic simulation, creating a more realistic graphical simulation.

In the past the Synchro/SimTraffic combination was far superior to other simulation programs in its ease of use. However, the new version of CORSIM has reduced this “ease of use” gap with the addition of the TRAFED editor.

Figure 1.

Isolated Intersection Vicinity Map

The Federal Highway Administration developed CORSIM with two modeling components—one for urban surface street systems (NETSIM) and the other for freeway systems (FRESIM). FHWA designed these two programs separately and later integrated them to create a program for modeling both systems in one model. The developers believe there is different driver behavior in freeway and surface street conditions, thus the CORSIM model has maintained the separate simulation sub-programs.

Traffic Software Integrated System (TSIS) hosts the CORSIM simulation and its support tools. TSIS Version 5.0 was released in July 2001. This version significantly improved the usability of the program by adding a Windows-based input editor, TRAFED. TRAFED now allows the user to draw the roadway system with an image in the background. TRAFVU is a component that allows the user to view the simulation in a graphic format. TRAFVU does not have the capability to show a background image with the simulation in the current release version.

Apples and Oranges

About the models

The CORSIM and SimTraffic microscopic simulation models provide time-based, stochastic simulation of individual vehicles in a roadway system. Comprehensive measures of effectiveness (MOEs) are collected for each vehicle in the model for every second of model simulation for CORSIM and tenth of a second for SimTraffic. These MOEs include system-wide measurements as well as measurements by link. The software programs also generate graphics that depict street networks, traffic control device indications and the animated movement of vehicles.

CORSIM. The Federal Highway Administration developed CORSIM with two modeling components—one for urban surface street systems (NETSIM) and the other for freeway systems (FRESIM). FHWA designed these two programs separately and later integrated them to create a program for modeling both systems in one model. The developers believe there is different driver behavior in freeway and surface street conditions, thus the CORSIM model has maintained the separate simulation sub-programs.

Traffic Software Integrated System (TSIS) hosts the CORSIM simulation and its support tools. TSIS Version 5.0 was released in July 2001. This version significantly improved the usability of the program by adding a Windows-based input editor, TRAFED. TRAFED now allows the user to draw the roadway system with an image in the background. TRAFVU is a component that allows the user to view the simulation in a graphic format. TRAFVU does not have the capability to show a background image with the simulation in the current release version.

SimTraffic. SimTraffic’s developer is Trafficware. It operates as companion product for the popular macroscopic analysis program, Synchro. Nearly all of the basic coding is accomplished through Synchro. SimTraffic is a stochastic model with various driver and vehicle types and can model both surface street and freeway operations, similar to CORSIM. Synchro allows the user to import a JPG, BMP, or DXF file for a background image. This image also transfers to the SimTraffic simulation, creating a more realistic graphical simulation.

In the past the Synchro/SimTraffic combination was far superior to other simulation programs in its ease of use. However, the new version of CORSIM has reduced this “ease of use” gap with the addition of the TRAFED editor.
CORSIM’s treatment of pedestrians is described this way in the help documentation:

“It is not necessary to code this data unless the pedestrian demand conflicting with the turn movements from the phase being programmed is greater than 100 crossings per hour. The absence for any phase with less than 100 crossings per hour will have no impact on the CORSIM analysis or the output measures of effectiveness.”

—TRAFED User’s Guide

Given that the pedestrian volumes were under 100, the CORSIM model essentially ignored the impact pedestrians had on this intersection. Based upon the field data, we found this assumption to be unrealistic in this case.

After some additional calibration testing we decided that CORSIM would not provide a reasonably accurate simulation model of this intersection, given the moderate pedestrian demand that conflicted with the eastbound right-turn and westbound left-turn movements. Further efforts to calibrate CORSIM were abandoned.

SimTraffic Analysis

The same roadway system was coded in Synchro software to develop the input file necessary for SimTraffic. After we ran the initial simulation, it was obvious that pedestrians conflicts were accounted for in the vehicle logic. In fact, pedestrians were shown in the animation files (as small triangles) and turning vehicles reacted to the conflict by waiting for the simulated pedestrian to cross the street (Figure 4).

We reviewed the initial simulation runs to make certain vehicle and pedestrian volumes were being modeled as coded. We also checked signal timing, signal phasing, free flow speeds and queue lengths. We determined from this review that the simulation replicated the intersection quite well except for creating excessive vehicle queue lengths on the eastbound approach. Driver parameters were adjusted to reduce the queue length to match the observed distance.

Recommendations

For this study it was important to include the effects of moderate pedestrian volumes on the intersection approaches. SimTraffic accounts for pedestrian crossing conflicts in
the vehicle logic and in the animation; CORSIM, does not. The analysis of North 7th Street/Patterson Road provides evidence that pedestrian levels under 100 per hour can significantly affect intersection operations.

When conducting studies along urban collector and arterial roadways where pedestrians create significant conflicts with intersection operations, we recommend using SimTraffic. For similar studies where pedes-

Figure 3. ▲
TRAFED Roadway Network

Figure 4. ▶
SimTraffic Intersection View
trians are not of concern, either simulation program will provide acceptable results if proper calibration is done. HDR’s experience on other projects with no pedestrians has shown that CORSIM will typically require less calibration than SimTraffic. However, if adequate field data is obtained, both models can be calibrated to replicate field conditions.

Coordinated Arterial Case Study

Route 367 is located in the northeast section of the St. Louis metropolitan area (Figure 5). Our evaluation focused on the 0.3 mile section of the highway between I-270 and Lindbergh Boulevard. This segment of the highway is a four-lane divided section with two-way frontage roads closely paralleling the highway, as shown in Figure 6.

There are four signalized intersections and one unsignalized intersection along the corridor, which has a speed limit of 55 mph. The signals operate on a 140-second cycle and are coordinated along Route 367. Due to closely spaced frontage roads, long clearance intervals and all-red times are used to clear the three clustered intersections.

Field data for calibration included queue observations and travel time runs. We observed and recorded maximum and typical queues along Route 367, the cross streets and the frontage roads. We also conducted travel time runs along Route 367 to obtain average delay and average travel speeds.

CORSIM Analysis

The original CORSIM data file was constructed with Synchro 5.0 and transferred to CORSIM. The data file was then checked in the TRAFED program to verify the data conversion.

Calibration was straightforward. We used all of CORSIM’s default distributions and factors. The default headway discharge of 1.8 seconds and the default start-up lost time of 2.0 seconds were also used in the analysis.

CORSIM matched closely with the field-measured travel times and queues. The simulated queues and average intersection delays along the side streets also matched closely with those observed in the field. No significant modifications were needed for CORSIM to replicate field conditions.

SimTraffic Analysis

We modified a few parameters to calibrate the SimTraffic model along Route 367. The Route
367 travel times matched the field values closely, but the side road queues and delays did not. Therefore we did two additional calibration steps along New Jamestown Road, Parker Road, Redman Road and Dunn Road.

For the first step we adjusted the individual movement headway factors to 0.80 instead of using the calculated headway factor. SimTraffic attempts to match about 1,800 vph, so in some cases we increased the number of cars serviced within a cycle.

For the second step we doubled the intersection spacing between the frontage roads and Route 367 from 100 feet (actual) to 200 feet—from centerline to centerline.

SimTraffic’s gridlock avoidance feature will not allow vehicles to queue into an intersection. Since this study area has very close intersection spacing, SimTraffic limited the number of vehicles that could queue across the frontage road intersection, thus reducing the volume of vehicles serviced in an hour. Even with additional calibration the simulation did not match the queue length and average delay at the study intersections.

Table 1. ❯ Speed Comparison

<table>
<thead>
<tr>
<th>Intersection</th>
<th>FieldMeasured Speeds (mph)</th>
<th>CORSIM Speed (mph)</th>
<th>Difference</th>
<th>SimTraffic Speed (mph)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dunn Road</td>
<td>30</td>
<td>25</td>
<td>-5</td>
<td>36</td>
<td>+6</td>
</tr>
<tr>
<td>Redman Road</td>
<td>25</td>
<td>22</td>
<td>-3</td>
<td>21</td>
<td>-4</td>
</tr>
<tr>
<td>Parker Road</td>
<td>28</td>
<td>23</td>
<td>-5</td>
<td>27</td>
<td>-1</td>
</tr>
<tr>
<td>Norma Lane</td>
<td>31</td>
<td>25</td>
<td>-6</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>New Jamestown</td>
<td>31</td>
<td>25</td>
<td>-6</td>
<td>30</td>
<td>-1</td>
</tr>
</tbody>
</table>

Table 2. ❯ Queue and Delay Comparison

<table>
<thead>
<tr>
<th>Intersection: NB 367 Queue Length (ft)</th>
<th>Average Intersection Delay (sec/veh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field CORSIM SimTraffic</td>
<td>CORSIM SimTraffic</td>
</tr>
<tr>
<td>Dunn Road</td>
<td>800 910 1,900</td>
</tr>
<tr>
<td>Redman Road</td>
<td>700 850 700</td>
</tr>
</tbody>
</table>

Results Comparison

Once the models were calibrated to the extent possible, the results of each model were compared. Table 1 compares the speeds measured in the field and those of the simulation models. In general, both models were close to the field measured travel speeds. SimTraffic matched the travel times more closely, but had a higher degree of variability when compared to CORSIM speed results (the speeds were less consistent when comparing the multiple simulation runs).

Differences between the two simulation models are notable when comparing the average intersection delays and the observed northbound queue lengths along Route 367 (Table 2). The three intersections at Dunn Road (Route 367 intersection and two frontage road intersections) were aggregated to obtain one value for average intersection delay. The CORSIM and SimTraffic average intersection delays at Dunn Avenue matched closely. However, the maximum northbound queue lengths are considerably different when compared to the field measure values. The SimTraffic queue length is double the CORSIM reported queue length.

The reverse is true at the Route 367/Redman intersection. The maximum queue lengths match closely to the field measured values, while the average intersection delays are considerably different. A difference of almost 30 seconds per vehicle exists between the CORSIM and SimTraffic runs.

Another issue of concern regarding simulations on large networks is simulation run time. We looked at run time for the two models to compare the amount of time needed to process the data. In this study SimTraffic compilation time was just over two times longer than CORSIM. Further, if CORSIM animation is not needed and is turned off in the card file, CORSIM compiled approximately five times faster.
Recommendations
In this evaluation CORSIM matched more closely with the travel time runs, average intersection delays and observed queue lengths. The SimTraffic model matched well with the Route 367 travel times, but average intersection delay and queue lengths could not be calibrated to match acceptably.

Overall CORSIM provided results that more closely matched existing conditions with less calibration effort. If, however, the intersection spacing were not a factor (say the existing intersections were separated by 300 feet) then both CORSIM and SimTraffic would have provided very comparable results.

Freeway Case Study
This study was conducted to determine calibration parameters within a freeway major weave area in the Midwest. The project evaluated interchange alternatives at the I-35/80/235 system interchange in northeast Des Moines, Iowa. Some of the future interchange concepts had weaving areas where calibration data was needed, but there were few similar weaving sections in the Des Moines area where field data could be collected. Therefore we selected a study area in Omaha, Nebraska to determine calibration parameters that closely matched the conceptual weaving areas. The selected study area was the northbound major weave area at the I-80/L Street interchange in Omaha (Figure 7).

The study area included the northbound section of I-80 from Q Street to the I-80/I-680 system interchange. The focus area of the study was the major weave section along northbound I-80 shown in Figure 8. This critical weave area was less than 1,500 feet in length and carried a heavy AM Peak volume of 5,100 vph.

The merge area at the eastbound L Street on ramp added one lane to northbound I-80, resulting in a three lane section. The diverge area is three lanes, with a shared center lane for through and exiting traffic. Due to the relatively short weaving distance and high weaving demand, congestion occurs in this area. During the AM peak hour queuing from weaving conflicts extends upstream 1,500 feet from the I-80/L Street on ramp gore area.

Data collection was extensive. Video cameras were placed in the study area to collect weaving volumes, queuing, driver behavior and densities. Travel time runs were also made with time, spot speeds and average speeds collected. We used this information to help match the simulation model to the field conditions. Link travel speed was the initial calibration parameter. After the speeds were matched within acceptable variances, we compared model and field queuing data.

CORSIM Analysis
The CORSIM model default parameters were slightly conservative without calibration. We adjusted driver parameters to provide more aggressive behavior in the weaving areas. Car following sensitivity factors were adjusted in the ramp influence areas to accomplish this. The field values were reached in the simula-
tion model with this adjustment.

Queuing calibration was performed by moving ramp warning locations. Speed data was closely replicated by this model for basic freeway, ramp junction and weaving areas.

SimTraffic Analysis

The coding of the SimTraffic network was accomplished with Synchro. The help file in Synchro suggests that the headway factor for freeway links be set to 0.90. This was done in the initial setup of the network, but was later adjusted to 0.85 to calibrate the model, along with other changes in order to attempt to match field conditions.

The SimTraffic model default headway and driver parameters were conservative in comparison to field data. Link and driver headway variables were adjusted significantly to calibrate the model. The SimTraffic model still could not replicate field measured results for speed and density. Additional efforts were focused on calibrating the speeds to match observed speeds. However, after significant effort adjusting the driver headway parameters, some link speeds were as much as 15 mph lower than field values.

Results and recommendations

The initial, uncalibrated results of the CORSIM model were significantly closer to field data. The CORSIM model speeds were within five mph of field values after calibration, whereas the SimTraffic speeds could not be calibrated to within 10 mph of the field data for all segments, as shown in Table 3. In addition, SimTraffic does not directly provide density as a measure of effectiveness and therefore has to be calculated. This extra step, of course, takes more time to complete. Based upon this analysis CORSIM is recommended for use on freeway facilities.

Conclusions

The purpose of this article was to provide guidance on the use of two common traffic simulation programs. Three case studies were analyzed with both CORSIM and SimTraffic. Based on the analysis findings, CORSIM provided more accurate results for the signalized arterial corridor and the freeway analyses, while SimTraffic provided more reliable results for the analysis of an intersection with pedestrian activity.

Over the past several years, the authors have been involved in a variety of simulation projects and have gained extensive experience with both CORSIM and SimTraffic. The authors were involved in beta testing for both CORSIM and SimTraffic (version 5 and previous versions). Through these efforts and the case studies conducted for this paper, the authors can provide recommendations for which simulation program is better suited for a particular roadway environment. These recommendations are provided in Table 4.

As with any software package, the user should become familiar with correct procedures for use and the program’s shortfalls. Both CORSIM and SimTraffic are useful tools when used appropriately. The traffic engineer must decide which is right for his or her particular project.

Currently Trafficware is planning enhancements for its next version of SimTraffic. Over the next several years, FHWA will be transferring efforts to an initiative called Next Generation Simulation Program (NGSIM), which changes FHWA’s role from a software developer to a market facilitator. Limited enhancements are planned for the period of transition. Until the time when new NGSIM tools are available, we hope this article will provide some insight into how to apply CORSIM 5.0 and SimTraffic 5.0 in your work as a transportation professional.

References

SimTraffic 5.0 User Guide (on-line), developed by Trafficware Corporation, 1009B Solano Ave, Albany, CA.

About the authors
Matthew J. Selinger, P.E., PTOE, Steven B. Speth, E.I., and Michael T. Trueblood, P.E., PTOE, are Transportation Engineers for HDR Engineering, Inc. For more information about these case studies, contact Michael Trueblood at: mtrueblo@hdrinc.com.

This article was adapted from an article presented at the Institute of Transportation Engineers 2001 Annual Meeting. The full paper may be found at: www.movite.org/articles_members.htm.

Table 4.

<table>
<thead>
<tr>
<th>Roadway System/Conditions</th>
<th>CORSIM 5.0</th>
<th>SimTraffic 5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolated intersection (without pedestrians)</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Isolated intersection (with pedestrians)</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Signalized arterial (without close frontage roads)</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Signalized arterial (with close frontage roads)</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Downtown Signal Grid (without buses, parking, etc.)</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Downtown Signal Grid (with buses, parking, etc.)</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Freeway Operations</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Superior Animation (background image display)</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

pc-trans needs feature writers

We are seeking writers for feature articles on the use of personal computers and software in the fields of transportation engineering and/or planning. Our readers include about 16,000 transportation professionals in the U.S. and overseas.

Writing guidelines are available by contacting:
Lisa Harris, editor
pc-trans magazine
1530 W. 15th St, Room 2001
Lawrence, Kansas 66045
(785) 864-2590
LHarris@ku.edu

New! Version 5.0 collects GPS information for Travel Time & Delay Reports

For information, call or write Greg Bullock (831) 842-9641
757 Bayview Avenue • Pacific Grove CA 93950-2503
www.tsppd.com info@tsppd.com
Also available from pc-trans
HY-24, DBRM MODEL, Version 4.0
The design hydrographs by the Drainage Basin Runoff Model (DBRM Model) contain a program for the computation of a runoff hydrograph from a complex basin. Hydrographs of runoff from various sub-basins comprising the total basin are computed by application of rainfall-excess to unit hydrographs of each sub-basin and then combined and routed through channel and/or reservoir to produce the total basin hydrograph. Rainfall-excess increments are computed by a modification of the standard Soil Conservation Services (SCS) runoff curve equations. This modification accounts for runoff from three sources—the urban directly-connected impervious area (DCIA), the urban pervious (grassed) and non-directly connected impervious area, and the rural portion of each sub-basin or from each source only. The unit hydrograph used was developed from equations originated by James A. Constant (formerly Chief Reservoir Regulation Section, Corps of Engineers). These equations produce unit hydrograph almost identical to the standard SCS unit hydrographs. Channel routing is accomplished by the Muskingum method. A program for computing the time of computation is also included. The DBRM Model produces results almost identical to those of HEC-1, HEC-HMS and TR-20 if the same input parameters are used. This software has been accepted by FEMA for flood plain information studies. Requires: Windows 95, 98, 2000, ME or XP.
HY-24, version 4.0, $100

HY-34, HEC-HMS, Version 2.2.0
The Hydrologic Modeling System HEC-HMS Version 2.1.3 was released for general use in November 2001. A number of defects have been found and repaired since that release. New capabilities have also been designed and added to the program. The resulting release, labeled Version 2.2.0, is available from PC-TRANS. Significant new features have been added to the reservoir element. It is now possible to specify a low-level outlet, ogee or broad-crested spillway, level or non-level dam overflow, and dam break as part of the reservoir element. The new features use the new elevation-storage or elevation-area options. The old features using the storage-outflow, elevation-storage-outflow, or elevation-area-outflow options are still available.

Other new program features include support for the MS Windows clipboard, minor enhancements to the standard project storm, improved HEC-1 import, impervious area for the soil moisture accounting loss method, and the straddle-stagger reach routing method.
HY-34, version 2.2.0, $200 (including documentation)
HY-34U, Update to version 2.2.0, $100

SU-9, GPS2CAD 2.5
This new version contains two major improvements:
• It now works with most of the Garmin hand-held units, including the popular eTrex line, which was most requested by users; and
• It comes with improved printing capabilities for the points in the GPS grid and CAD grid.

Also available is a new recreational version (GPS2CAD-rv) that allows you to connect your hand-held GPS Receiver to your computer and download Waypoints and Trackpoints maintained by GPS Receivers. Waypoints are points entered manually with the push of a button on the GPS Receiver’s faceplate, and Trackpoints are points that show the actual walk-around history of the user’s location. Waypoints are generally accessible for review on the GPS display, but Trackpoints are typically hidden from the user except to plot them in a connect-the-dot display.
With GPS2CAD-rv, both of these point files can be retrieved and plotted with lines, points and blocks directly into AutoCAD. While it does not have some of the features of the full version, it maintains all the essential core functions. It also works with AutoCAD 14, 2000 and 2000i. Satellite navigation and site layout are now made much more convenient by outputting to an AutoCAD file.
SU-9, version 2.5, $245
SU-9rv, recreational version, $145

TE-17 TRANSYT-7F, Rel. 9.6
TRANSYT-7F is a complete traffic signal timing optimization software package for traffic networks, arterial streets, or single intersections having complex or simple conditions. It offers enhancements to the modeling of traffic-actuated control and cycle length optimization, ability to view extensive simulation details, improved interface/output appearance, plus integration with HCS and CORSIM. The release 9.6 features genetic algorithm (G.A.) optimization of cycle length, phasing sequence, splits, and offsets, using either TRANSYT-7F or CORSIM as the simulation engine. Genetic algorithm optimization is a theoretical improvement over the traditional hill-climb optimization technique that has been employed by TRANSYT-7F for many years. The genetic algorithm has the ability to avoid becoming trapped in a "local optimum" solution, and is mathematically best qualified to locate the "global optimum" solution.
Optimization of phasing sequence on both the major and minor streets can be handled using the genetic algorithm (G.A.). During optimization, TRANSYT-7F examines virtually all feasible phasing sequences including leading and lagging left-turns with and without overlap, lead-lag phasing, and split phasing. The program is designed to
be equally effective in optimizing phasing sequences for networks with left-hand driving (e.g., having leading or lagging right-turns).

The user may allow full optimization throughout the network, but can also specify restrictions on optimization at any approach of any intersection. On every approach, the user may specify whether they wish to allow optimization, overlap phasing, lead-lag phasing, leading through movements, or the “yellow trap.”

TE-17, version 9.6, $540 (including documentation)

TE-34, PASSER II-02, Version 1.0
The new release of a Windows upgrade to PASSER II software, which develops optimal progression along signalized arterials having multiple arterial phase sequences is now available. This new release (PASSER II-02) has a new user interface similar to PASSER III-98. It also has an enhanced optimization routine used by its predecessor, PASSER II-90. The input data requirements have not changed; however, unlike the previous release, it preserves the lane configurations supplied by the user. This was achieved by introducing a new format for the input data file. The program can read old input data files and will automatically convert them to the new format.

Because a large user-base exists, the old output report from PASSER II-90 (now the “Classic” output) can be selectively displayed and printed. PASSER II-02 user interface provides several new features as follows:
- updated saturation flow calculation module;
- summary of results for all cycle lengths analyzed;
- user can view output for any selected cycle length;
- generates output reports in rich text format and launches Microsoft Word for viewing these;
- new time-space diagrams in html format, and viewed by automatically launching Microsoft Internet Explorer; and
- advanced Help facility.

The enhanced optimization routine now produces integer-only green splits. This new version will be available from PC-TRANS soon.

TE-34, version II-02 (1.0), $395

TE-34U, Upgrade to version II-02 (1.0), $245

TE-36F, WARRANTS/TEAPAC, MUTCD 2000 Warrant Analysis
The WARRANTS2000/TEAPAC program (#TE-36F1) now performs multi-way stop warrant analyses in addition to its signal warrant analyses, both according to the procedures dictated by the MUTCD 2000 (Millennium Edition).

In addition, an option has been added for user-selection of the so-called 56 percent rule for the combination of warrants used in a 2000 Signal Warrant Analysis. WARRANTS2000 continues to provide an option to perform a signal warrant analysis using the previous MUTCD (1988). WARRANTS2000 performs its multi-way stop and signal warrant analyses using all the volume-oriented warrants of the MUTCD 2000, including warrants 1A, 1B, 1C, 2, 3A, 3B and 7 for signals. A unique algorithm searches every possible 60-minute period of a 15-minute count for hours that meet the warrants, ranking the identified hours by minor street volume. Input data can be imported directly from various electronic traffic counters such as Jamar and TimeMark or edited/manually. The 2000 warrant analysis enhancements are also built into the Usage Level 2 version of TURNS/TEAPAC (#TE-36F2).

Usage Level 2 of WARRANTS (#TE-36F2) also provides advanced tabulation and peak hour analysis features. Peak 15-minute or 60-minute volume data can be sent directly to other TEAPAC programs like SIGNAL2000 for optimized HCM level of service calculations, SITE for background traffic in impact studies, and PREPASSR, PRETRANSYT and PRENETSIM for signal timing and modeling studies. Use of the TED and TUTOR programs in the TEAPAC system allow complete automation of all of these calculations for unparalleled efficiency, accuracy and speed.

WARRANTS has a unique Visual Mode, which provides an intuitive, Windows graphical user interface, as well as a Command Mode for power users. This is the same WinTEAPAC2000 interface found in all other TEAPAC programs. This interface includes a fully indexed, on-screen user guide and context-sensitive help and error diagnostics. WARRANTS also incorporates the new TEAPAC Version 5 interface with its Tabular View to increase efficiency for intermediate users and certain data-intensive tasks.

The Warrant Analysis version of WARRANTS/TEAPAC Ver. 2.01 from Strong Concepts (#TE-36F1) is available from PC-Trans for $395. The Usage Level 2 version, (#TE-36F2), which adds advanced tabulation and peak hour analysis features is available for $595. Educational versions are available for half-price and demonstration versions are available free as downloads from the Strong Concepts and PC-Trans web pages. Free and reduced-price updates are available for registered licensees of earlier versions of WARRANTS and TURNS directly from Strong Concepts.

TE-36D & TE-36G, PRETRANSYT/TEAPAC & PRENETSIM/TEAPAC
PRETRANSYT and PRENETSIM, for the TRANSYT-7F and CORSIM traffic models have been vastly enhanced to include many advanced modeling capabilities which are available in these time-tested, government-sponsored models. These enhanced capabilities provide for efficient and reliable execution of traffic system modeling, optimization and animation projects. They include:
- sign-controlled movements;
- startup lost time and end gain time by movement;
- storage capacities by movement;
- alternative upstream-downstream assignment method (TRANSYT);
- dual optional lane usage;
- link curvature (CORSIM);
- free flow lanes;
- number of lanes;
- right-turn-on-red;
- heavy vehicle percentages
Other enhancements include:
• increased limits on allowed map coordinate values to accommodate larger scale coordinate systems;
• ability to read all of these model parameters directly from SIGNAL2000 for true HCM-based intersection capacity analysis and optimization;
• compatible changes made in PREPASSR for PASSER-II;
• better simulation time period management (CORSIM);
• option to enter executable file name in setup CFG file;
• better permitted left turn modeling (TRANSYT);
• fine-tuning of the new Version 5 TEAPAC interface.

PRETRANSYT and PRENETSIM both have the unique TEAPAC Visual Mode, which provides an intuitive, Windows graphical user interface, as well as a Command Mode for power users. This is the same interface found in all other TEAPAC programs. This interface includes a fully indexed, on-screen user guide and context-sensitive help and error diagnostics. PRETRANSYT and PRENETSIM also incorporate the new TEAPAC Version 5 interface with its Tabular View to increase efficiency for intermediate users and certain data-intensive tasks.

The 12-intersection versions of PRETRANSYT/TEAPAC Ver. 2.71 (#TE-36D1) and PRENETSIM/TEAPAC Ver. 1.31 (#TE-36G1) from Strong Concepts are available from PC-Trans for $495. The Usage Level 2 versions, (#TE-36D2 and #TE-36G2), which handle up to 100 intersections with subsystem management are available for $695. Educational versions are available for half-price and demonstration versions are available free as downloads from PC-Trans web pages. Free and reduced-price updates are available for registered licensees of earlier versions of PRETRANSYT and PRENETSIM directly from Strong Concepts.

2000 Highway Capacity Manual (HCM). The major changes to SIGNAL2000 include:

• Handling up to 500 intersections in one file with a single click. If you are working with a single intersection, trying different geometric designs with repeated optimizations for an impact analysis, or an intersection design, you can keep your focus on that single intersection, as before. But projects frequently call for a re-analysis or re-optimization under new assumptions where managing all intersections and/or all scenarios individually becomes very time-consuming. SIGNAL2000 Version 2 has the ability to manage the data for up to 500 intersections in a single file, and to execute HCM capacity analyses and full timing/phasing optimization for all intersections with the press of a single button.

Version 2 is compatible with old data files, and it’s easy to combine multiple data files from Version 1, SIGNAL97, or even SIGNAL94 into a single file for Version 2.

• Seamless integration of SIGNAL2000 data with PRENETSIM, PRETRANSYT and PREPASSR. One of the advantages of the new multi-intersection analysis option is the ability to seamlessly integrate its data with the PRENETSIM, PRETRANSYT and PREPASSR elements of the TEAPAC software package.

PRENETSIM manages the interface between the TEAPAC data inputs and the more complex inputs required by CORSIM, developed by the Federal Highway Administration (FHWA) for simulation and animation of street networks.

PRETRANSYT performs the same function for the TRANSYT-7F program which simulates traffic on a signalized network, while also providing a time-proven method for optimizing the coordinated signal timings.

PREPASSR provides a similar function for the popular PASSER-II program, including the latest PASSER-II-02 Windows Version of PASSER-II. These programs easily share their data files and results with each other including the optimized parameters.

For example, PASSER’s optimized offsets can become TRANSYT’s starting offsets, and the timing plans generated from either can be easily simulated and animated with CORSIM.

These programs have always been able to read the data files of SIGNAL2000 (and SIGNAL97, SIGNAL94 and SIGNAL85), but with SIGNAL2000 Version 2, the user is only one click away from a CORSIM optimization or a TRANSYT or PASSER optimization for a complete system analysis.

• Accurate treatment of NEMA-style, dual-ring controllers. A troubling problem for some users of the Highway Capacity Manual (HCM) has been an apparent difficulty in representing timings for NEMA-style controllers, especially when there are small differences between the times allocated to left turn phases. Version 2 of SIGNAL2000 has the ability to resolve this problem by representing negative phase times. The user can quickly switch his/her view of the phase timings either from the perspective of the HCM (timings by phase) or to a NEMA-style controller (timings by movement), by virtue of the new dual-ring diagram displayed on the screen. The optimizer in SIGNAL2000 is now also able to take advantage of this new representation of timings to maximize the capacity of a signalized intersection via timing and phasing optimization. This produces the only available true-HCM optimization of dual-ring controllers.

• Major enhancement to optimization method for signal timing and phasing. The fundamental optimization strategy used in SIGNAL2000 goes back to the first version of SIGNAL which optimized delay. This new version of SIGNAL2000 gives the user much better control of the optimization process. For example, users could previously specify the level of service (LOS) to be targeted for the critical movements of each phase. Now that feature has been expanded to allow the user to enter the specific amount of delay targeted for the critical movements as an alternate to the level of service. This allows two significant improvements over the
program notes

TE-36J1, version 2, $595
TE-36J0, version 2 (demo), $0

TE-47, aaSIDRA, Rel. 2.0
aaSIDRA 2 is the major new version of the popular intersection analysis software by Akcelik and Associates. It is an advanced analytical tool for evaluation of alternative intersection designs in terms of capacity, level of service and a wide range of performance measures including delay, queue length and stops for vehicles and pedestrians, as well as fuel consumption, pollutant emissions and operating cost.

The new features of aaSIDRA 2 include new output graphics in full Windows environment including intersection geometry, signal phasing and movement statistics displays, major traffic model enhancements, and various other input and output enhancements.

New output graphical displays introduce many improvements including detailed geometry pictures for roundabouts and all intersections with diagonal legs, a larger range of output statistics displayed, and phasing displays with phase time information. Full color, low color and monochrome options are available. All graphical displays as well as the new HTML-style text output are based on an XML data file developed for aaSIDRA.

Traffic model enhancements in aaSIDRA 2 include:

- introduction of HCM 2000 model defaults including major revision of the aaSIDRA US metric version based on the HCM 2000 metric edition defaults;
- extensive update of default parameters including major revision of defaults for operating cost, fuel consumption and emission estimates.

Requires: IBM compatible PC (Pentium II 500 MHz or better); Windows 98, Me, NT4, 2000, XP; Internet Explorer version 5 or later; Minimum 64 Mb RAM; CD drive for installation; and Graphics card with hardware OpenGL support and the latest drivers to suit, running at least 1024 x 768 resolution (24 or 32-bit color mode recommended).

TE-47, version 2.0, call for pricing

TE-48, TS/PP-Draft Version 5.0
This new version of the Time-Space and Platoon-Progression software has the following new features:

- You can now annotate the diagram window -- put notes of any length, in any font size and style, anywhere on the diagram;
- In the Options dialog, you have greater control over the Layout of the Diagram. You may label the Splits with either arrows or two-letter abbreviations. You may display the Offset on staggered lines below the intersection names or next to the Offset Reference Point in the diagram to reduce clutter. You may show just one band in each direction, and you may color-fill the bands to make them stand out. You can show minor
Time Markers (ticks or grid lines) in addition to the regular (major) time markers;

- Offsets are no longer constrained to reference a movement along the arterial in the diagram—they may reference movements along the cross-street;
- It is now easier to set and manage split phasing with the new protected phase sequence options "Split-Lead" and "Split-Lag";
- Printing and general operation under Windows 2000 and Windows XP has improved.

The biggest new features kick in if you have access (or can get access) to a GPS receiver. Just connect a compatible GPS receiver to your computer and let TS/PP-Draft track position and speed. TS/PP-Draft can use this information to:

- Determine the geographic positions of intersection. From this, TS/PP-Draft can calculate the distance between intersections, and lay out the Network View with high accuracy;
- Track your current location in time and space and display it on the diagram window and in the Network View;
- Predict whether you will arrive at the next signal during the green time. If you wish, it will play different sounds to indicate you’re projected to arrive a bit early or late, or a bit too early or too late;
- Record Trip Logs of travel along the network. Trip Logs can be used to:

 - Plot trajectories on the diagram windows, graphically showing where delay occurs, which signals you are stopped at, and where you enter or leave the green bands. Before and after trip logs may be recorded in the same diagram data file, and you may select which ones are visible at any moment.
 - Prepare Travel Time and Delay Reports, which can easily be copied and pasted into word-processing documents or spreadsheets for detailed analysis. These can be very powerful tools of analysis for determining the effectiveness of a timing plan.
 - Measure the actual travel distance between intersections.
 - Calculate the “optimal” relative offset between intersections.
- Calculate the actual average speed between intersections.

A sample diagram data file included with version 5.0 shows Trip Logs plotted as trajectories and available for the Travel Time and Delay Reports and other calculations.

Compatible GPS receivers include any receiver that complies with the NMEA (National Marine Electronics Association) 0183 Standard, or the Earthmate from DeLorme (available for around $125). The majority of GPS receivers comply with the NMEA 0183 Standard. TS/PP-Draft has been tested with GPS receivers from Magellan and Garmin and they all work great.

- TE-48D, demo, version 5.0, $0
- TE-48W, version 5.0, $495
- TE-48WU, Update to version 5.0, $95

TO-20, Bus Transit Garage Space Requirement Model, Version 6.0

This software prepares a detailed space program for bus transit garages. It can generate a list of 59 elements that are part of a transit garage with the number of square feet required for each. The program also lists the required number of repair bays, bus stalls, and paint and body bays.

The space program is broken down into five major areas including General Offices, Operations Area, Repair Area, Vehicle Storage (indoors and outdoors), and Outside Area. The model handles any bus fleet size from five to 350 buses with any mix of 30-, 35- and 40-foot buses as well as articulated buses and paratransit vans.

This new version runs on Windows 95 or higher. It contains detailed Help Screens and comes with a printed User’s Manual. The User’s Manual for the new version includes Linkage Diagrams for the Major Facility Elements, Daily Service Cycle, and Major Area Elements. It also identifies Space Utilization Characteristic for every element in the garage.

- TO-20, version 6.0, $750

NEW PROGRAMS

TE-73, QuickZone, Version 1.0

To address mobility and safety impacts of work zones, the Federal Highway Administration (FHWA) continues on page 27
ENVIRONMENTAL ENGINEERING

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Product #</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOP—Synoptic Rainfall Data Analysis Program</td>
<td>EN-1</td>
<td>$80</td>
</tr>
<tr>
<td>WQRRS—Water Quality for River Reservoir System</td>
<td>EN-3</td>
<td>$180</td>
</tr>
</tbody>
</table>

HIGHWAY ENGINEERING

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Product #</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARK PMSA—Arkansas Pavement Mgmt for Small Agency</td>
<td>HE-7</td>
<td>$40</td>
</tr>
<tr>
<td>CADD Turning Templates—1997</td>
<td>HE-61</td>
<td>call us</td>
</tr>
<tr>
<td>AutoTURN—airport and highway, 4.0</td>
<td>HE-34A</td>
<td>call us</td>
</tr>
<tr>
<td>demo</td>
<td>HE-34D</td>
<td>$0</td>
</tr>
<tr>
<td>highway, 4.1</td>
<td>HE-34H</td>
<td>call us</td>
</tr>
<tr>
<td>BERG2, SEP'T89</td>
<td>HE-13</td>
<td>$35</td>
</tr>
<tr>
<td>CBEAR—Bearing Capacity Analysis of Shallow Foundations</td>
<td>HE-63</td>
<td>$25</td>
</tr>
<tr>
<td>COM62AP—Laterally Loaded Pile Analysis Program, 2.0</td>
<td>HE-62</td>
<td>$40</td>
</tr>
<tr>
<td>CP-1/DAMA, 1991</td>
<td>HE-31</td>
<td>$50*</td>
</tr>
<tr>
<td>*plus shipping/handling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-2/HWLOAD—Pavement Thickness Design</td>
<td>HE-26</td>
<td>$50*</td>
</tr>
<tr>
<td>for Heavy Loads, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*plus shipping/handling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-3/AIRPORT—Airport Pavement Analysis, 1989</td>
<td>HE-27</td>
<td>$50*</td>
</tr>
<tr>
<td>*plus shipping/handling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*plus shipping/handling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-6/CAMA—Computer Assisted Asphalt Mix Analysis, 2.0</td>
<td>HE-30</td>
<td>$265*</td>
</tr>
<tr>
<td>*plus shipping/handling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAMP—Drainage Analysis and Modeling Programs, 1.1</td>
<td>HE-20</td>
<td>$30</td>
</tr>
<tr>
<td>DAPS—Deflection Analysis of Pavement Structures, 1.0</td>
<td>HE-65</td>
<td>$449*</td>
</tr>
<tr>
<td>*plus shipping/handling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Databases for Standardized Small Sign Support Hardware</td>
<td>HE-58</td>
<td>$30</td>
</tr>
<tr>
<td>DRIVEN—Ultimate Vertical Static Pile Capacity, 1.0</td>
<td>HE-49W</td>
<td>$50</td>
</tr>
<tr>
<td>EARTH—Earthwork Cut & Fill Calculator</td>
<td>HE-59D</td>
<td>$500</td>
</tr>
<tr>
<td>DO5 version 4.0</td>
<td>HE-59W</td>
<td>$500</td>
</tr>
<tr>
<td>Windows version 5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMBANK—Settlement of Embankment Loads, 1.0</td>
<td>HE-48</td>
<td>$30</td>
</tr>
<tr>
<td>EXPEAR—Expert System for Pavement Eval. & Rehab., 1.4</td>
<td>HE-38</td>
<td>$65</td>
</tr>
<tr>
<td>RD88-073(document)</td>
<td>HE-38A</td>
<td>$25</td>
</tr>
<tr>
<td>RD98-145(document)</td>
<td>HE-38B</td>
<td>$15</td>
</tr>
<tr>
<td>GSRS—Grade Severity Rating System, 1.0</td>
<td>HE-10</td>
<td>$50</td>
</tr>
<tr>
<td>GuildSIGN, 4.0</td>
<td>HE-42</td>
<td>call us</td>
</tr>
<tr>
<td>demo</td>
<td>HE-42D</td>
<td>$0</td>
</tr>
<tr>
<td>GWIN-ROAD—Roadway Design Package, 1.0.1</td>
<td>HE-32</td>
<td>$2000</td>
</tr>
<tr>
<td>Highway Barrier Hardware Datasets, 1995</td>
<td>HE-53</td>
<td>$25</td>
</tr>
<tr>
<td>HWYCON—Highway Concrete Expert System, 4.0</td>
<td>HE-51</td>
<td>$60</td>
</tr>
<tr>
<td>ICAHD for AutoCAD—Interactive Computer Assisted Highway Design, 3.0</td>
<td>HE-23</td>
<td>$2500</td>
</tr>
<tr>
<td>ILLI-BACK—Backcalculation Software, 2.0</td>
<td>HE-21</td>
<td>$225</td>
</tr>
<tr>
<td>NDHMMS—North Dakota Hwy Materials Mgmt System, 1.0</td>
<td>HE-39</td>
<td>$45</td>
</tr>
<tr>
<td>NDRMS—North Dakota Roadway Mgmt System, 1.0</td>
<td>HE-41</td>
<td>$45</td>
</tr>
<tr>
<td>NDSMS—North Dakota Sign Mgmt System, 4.0</td>
<td>HE-40</td>
<td>$45</td>
</tr>
<tr>
<td>PathPlanner®ROADS, 1.0</td>
<td>HE-68</td>
<td>$995</td>
</tr>
</tbody>
</table>
| multi-license | HE-68ML | $500 ea.
| site license | HE-68SL | call us |
| PMS-IV—Pavement Management System-IV | HE-36P | $995 |
| priority | HE-36PD | $2,500 |
| priority w/data collector | HE-36D | $3500 |
| deterministic, 3.1A HE-96D | HE-36S | $3500 |
| stochastic, 3.1B | HE-36DC | $0 |
| city demo | | |

Programs available. PC-TRANS distributes software of interest to the transportation community. Many of the programs offered by PC-TRANS are in the public domain and are made available at a price that covers only our duplication and postage costs. Some of these programs are distributed as “shareware,” or “user-supported software,” and are being offered for your evaluation only. The price we charge for these programs covers our handling costs but does not include any proceeds to the authors. You are encouraged to support the shareware concept by making the requested contribution directly to the author of any shareware program that you like well enough to use.

Our other products are fully supported, copyrighted software, either developed at the University of Kansas or marketed through agreements with their authors.

Software information. This listing, divided by general types of software, includes software title, current version number, and price for all currently-available products. The listing is updated quarterly. Prices are subject to change at any time. Prices include software documentation.

Complete program descriptions are available in the PC-TRANS Software Catalog, available free upon request. The catalog is updated annually.

All programs listed run on IBM-compatible PCs. Most programs will be on 3.5-inch disks or CDs.

We charge a flat $10 processing fee per order form received—regardless of the number of products you order on the form—to cover handling costs. Please use the on-line order form to place your orders.

Technical support. Because many of our products are not of our own creation, we may not always have an immediate answer to your question. But we pledge to do our best to find the answer for you. If you need help with getting a program running or with operating a program, call us at (785) 864-5655 or e-mail us at pctrans@ku.edu. If we can’t answer your question right away, we will research it right back to you as quickly as possible.

We guarantee the integrity of the printed and magnetic information we distribute. If you receive a damaged disk or incomplete manual, let us know and we will remedy the situation.
<table>
<thead>
<tr>
<th>product name</th>
<th>product #</th>
<th>page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMS-IV—Pavement Management System-IV, continued</td>
<td>HE-36DCO</td>
<td>0</td>
</tr>
<tr>
<td>county demo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRLEAM—Pavement Rehabilitation Life-Cycle</td>
<td>HE-43</td>
<td>40</td>
</tr>
<tr>
<td>Economic Analysis, JUN91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDPH—Roadway Delineation Practices Handbook on CD-ROM</td>
<td>HE-60</td>
<td>$149.98</td>
</tr>
<tr>
<td>Rigid Pavement Design, 1.0</td>
<td>HE-66</td>
<td>30</td>
</tr>
<tr>
<td>RIS—Railroad Crossing Inventory System, APR86</td>
<td>HE-9</td>
<td>55</td>
</tr>
<tr>
<td>Road Manager 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>budget analysis</td>
<td>HE-33BA</td>
<td>$1895</td>
</tr>
<tr>
<td>drainage & utility</td>
<td>HE-33DU</td>
<td>$1295</td>
</tr>
<tr>
<td>pavement management</td>
<td>HE-33PM</td>
<td>$1895</td>
</tr>
<tr>
<td>sidewalk</td>
<td>HE-33S</td>
<td>$1295</td>
</tr>
<tr>
<td>traffic control</td>
<td>HE-33TC</td>
<td>$1295</td>
</tr>
<tr>
<td>ROADSIDE, 5.0</td>
<td>HE-12</td>
<td>50</td>
</tr>
<tr>
<td>Road/Site Designer, 2.1</td>
<td>HE-50</td>
<td>$95*</td>
</tr>
<tr>
<td>academic site license</td>
<td>HE-50A</td>
<td>$95*</td>
</tr>
<tr>
<td>demo</td>
<td>HE-50D</td>
<td>$0</td>
</tr>
<tr>
<td>Sign Drawings, 1991</td>
<td>HE-46</td>
<td>$165</td>
</tr>
<tr>
<td>SIMS—Sign Inventory Management System, 1999</td>
<td>HE-67</td>
<td>$65</td>
</tr>
<tr>
<td>SALLIE—Street Analysis of Lighting Location, 1.0</td>
<td>HE-11</td>
<td>$55</td>
</tr>
<tr>
<td>SIG—Sign Inventory System, FEB87</td>
<td>HE-8</td>
<td>$70</td>
</tr>
<tr>
<td>SPILE—Ultimate Vertical Static Pile Capacity, 2.0</td>
<td>HE-49</td>
<td>$50</td>
</tr>
<tr>
<td>STP—Surface Thickness Program, 1.0</td>
<td>HE-55</td>
<td>$10</td>
</tr>
<tr>
<td>WIN-SIGN—Sign Inventory for Windows, 1.1</td>
<td>HE-37</td>
<td>$89</td>
</tr>
<tr>
<td>WSDOT Bridge Engineering Software</td>
<td>HE-69</td>
<td>call us</td>
</tr>
</tbody>
</table>

HYDROLOGY & HYDRAULICS

<table>
<thead>
<tr>
<th>product name</th>
<th>product #</th>
<th>page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOSS HEC-2, 3.0</td>
<td>HY-14</td>
<td>$252</td>
</tr>
<tr>
<td>AutoCAD, 3.0</td>
<td>HY-14A</td>
<td>$895</td>
</tr>
<tr>
<td>demo</td>
<td>HY-14D</td>
<td>$0</td>
</tr>
<tr>
<td>BOSS WSPRO, 2.0</td>
<td>HY-15</td>
<td>$252</td>
</tr>
<tr>
<td>BRI-STARSTM—Bridge Stream Tube Model for Alluvial River</td>
<td>HY-37</td>
<td>$125</td>
</tr>
<tr>
<td>Simulation, 5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMPCHECK—Corrugated Metal Pipe Check, 2.0</td>
<td>HY-13</td>
<td>$35</td>
</tr>
<tr>
<td>Culvert Analysis Program by FHWA, 6.1</td>
<td>HY-8</td>
<td>$130</td>
</tr>
<tr>
<td>DBRM Model—Design Hydrographs By the Drainage Basin</td>
<td>HY-24</td>
<td>$100</td>
</tr>
<tr>
<td>Runoff Model, 4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRI-1—Drainage Requirements in Pavements, JAN 98</td>
<td>HY-33</td>
<td>$30</td>
</tr>
<tr>
<td>Flow Pro—Steady State Water Surface Profile, 2.0</td>
<td>HY-31</td>
<td>$39.95</td>
</tr>
<tr>
<td>evaluation, 2.0</td>
<td>HY-41E</td>
<td>$0</td>
</tr>
<tr>
<td>GWN-STORM, 1.0</td>
<td>HY-16</td>
<td>$2000</td>
</tr>
<tr>
<td>HEC-1—Flood Hydrograph Package, 4.1</td>
<td>HY-1</td>
<td>$205</td>
</tr>
<tr>
<td>HEC-2—Water Surface Profiles, 4.6.2</td>
<td>HY-3</td>
<td>$125</td>
</tr>
<tr>
<td>HEC-12—Pavement Drainage Program, 3.0</td>
<td>HY-19</td>
<td>$350</td>
</tr>
<tr>
<td>demo, 2.11</td>
<td>HY-19D</td>
<td>$0</td>
</tr>
<tr>
<td>HEC-12 (document), MAR84</td>
<td>HY-12A</td>
<td>$20</td>
</tr>
<tr>
<td>HEC-Geo HMS, 1.0</td>
<td>HY-94G</td>
<td>$100</td>
</tr>
<tr>
<td>HEC-Geo RAS, 3.0</td>
<td>HY-28G</td>
<td>$100</td>
</tr>
<tr>
<td>HEC-HMS—Hidrologic Modeling System, 2.2.0</td>
<td>HY-34</td>
<td>$200</td>
</tr>
<tr>
<td>HEC-IFH—Interior Flood Hydrograph, 2.0</td>
<td>HY-17</td>
<td>$200</td>
</tr>
<tr>
<td>HEC-RAS—River Analysis System, 3.0</td>
<td>HY-28</td>
<td>$150</td>
</tr>
<tr>
<td>HY7—Water Surface Profiles by FHWA, JUN08</td>
<td>HY-4</td>
<td>$110</td>
</tr>
<tr>
<td>HY8—Culvert Analysis Program by FHWA, 6.1</td>
<td>HY-8</td>
<td>$130</td>
</tr>
<tr>
<td>HDS-5 (document), 2001</td>
<td>HY-8A</td>
<td>$30</td>
</tr>
</tbody>
</table>

MANAGEMENT TOOLS

<table>
<thead>
<tr>
<th>product name</th>
<th>product #</th>
<th>page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better Decisions, 4.0</td>
<td>MA-6</td>
<td>$95</td>
</tr>
<tr>
<td>Equipment Manager 2000</td>
<td>MA-15W</td>
<td>$2495</td>
</tr>
<tr>
<td>demo</td>
<td>MA-15WD</td>
<td>$0</td>
</tr>
<tr>
<td>HUCA—Highway User Cost Accounting, JUL91</td>
<td>MA-5</td>
<td>$55</td>
</tr>
<tr>
<td>InventoryCTRL</td>
<td>MA-8</td>
<td>$1195</td>
</tr>
<tr>
<td>complete demo</td>
<td>MA-8G</td>
<td>$75</td>
</tr>
<tr>
<td>quick demo</td>
<td>MA-80</td>
<td>$10</td>
</tr>
<tr>
<td>MEMS—Municipal Equipment Management System, 93.0</td>
<td>MA-19</td>
<td>$65</td>
</tr>
<tr>
<td>Project Tracker—Project Tracker, main module, 1.1</td>
<td>MA-22M</td>
<td>$295</td>
</tr>
<tr>
<td>station module with limited access</td>
<td>MA-22S</td>
<td>$100</td>
</tr>
<tr>
<td>VehicleCTRL</td>
<td>MA-10</td>
<td>$1195</td>
</tr>
<tr>
<td>complete demo</td>
<td>MA-10C</td>
<td>$75</td>
</tr>
<tr>
<td>interface</td>
<td>MA-101</td>
<td>$135</td>
</tr>
<tr>
<td>quick demo</td>
<td>MA-100</td>
<td>$10</td>
</tr>
<tr>
<td>WorkManager 2000</td>
<td>MA-21</td>
<td>$2495</td>
</tr>
<tr>
<td>demo</td>
<td>MA-21D</td>
<td>$0</td>
</tr>
</tbody>
</table>

MAPPING & GIS

<table>
<thead>
<tr>
<th>product name</th>
<th>product #</th>
<th>page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>CadSpan—Merge Graphics & Data, 3.0</td>
<td>MG-3</td>
<td>$59*</td>
</tr>
<tr>
<td>(*plus $5 shipping/handling)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GISPlus, 3.0</td>
<td>MG-2</td>
<td>$2995</td>
</tr>
<tr>
<td>demo</td>
<td>MG-2D</td>
<td>$0</td>
</tr>
<tr>
<td>GWN-GIS, 1.21</td>
<td>MG-6</td>
<td>$4000</td>
</tr>
<tr>
<td>GWN-MMS—Municipal Mapping System, 2.0</td>
<td>MG-5</td>
<td>$2000</td>
</tr>
</tbody>
</table>

Prices include software documentation.
STRUCTURAL ENGINEERING

<table>
<thead>
<tr>
<th>Software</th>
<th>Version</th>
<th>License</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAP</td>
<td>2.0</td>
<td>site</td>
<td>$199</td>
</tr>
<tr>
<td>BMS-III</td>
<td>3.0</td>
<td>generic</td>
<td>$200</td>
</tr>
<tr>
<td>BOXCAR</td>
<td>2.0</td>
<td></td>
<td>$225</td>
</tr>
<tr>
<td>BRDCSM</td>
<td></td>
<td></td>
<td>$55</td>
</tr>
<tr>
<td>BRIDGEM</td>
<td>Design</td>
<td></td>
<td>$45</td>
</tr>
<tr>
<td>BT BEAM</td>
<td>1.4</td>
<td></td>
<td>$495*</td>
</tr>
<tr>
<td>CANDE-89</td>
<td>1.0</td>
<td></td>
<td>$35</td>
</tr>
<tr>
<td>Cbeam</td>
<td>1.0</td>
<td></td>
<td>$99</td>
</tr>
<tr>
<td>EZ-Beam</td>
<td>1.0</td>
<td></td>
<td>$99</td>
</tr>
<tr>
<td>PIPECAR</td>
<td>2.1</td>
<td></td>
<td>$20</td>
</tr>
</tbody>
</table>

SURVEYING

<table>
<thead>
<tr>
<th>Software</th>
<th>Version</th>
<th>License</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC-Surveyor</td>
<td>4.0/sw</td>
<td></td>
<td>$20</td>
</tr>
<tr>
<td>GPS2CAD</td>
<td>2.5</td>
<td></td>
<td>$245</td>
</tr>
<tr>
<td>GPS2CAD-DV</td>
<td>2.5</td>
<td>SU-9rv</td>
<td>$145</td>
</tr>
<tr>
<td>GWN-COGO</td>
<td></td>
<td></td>
<td>$995</td>
</tr>
<tr>
<td>GWN-COGO-db</td>
<td>AutoCAD 3.0</td>
<td>SU-8</td>
<td>$2500</td>
</tr>
</tbody>
</table>

TRAFFIC ENGINEERING

<table>
<thead>
<tr>
<th>Software</th>
<th>Version</th>
<th>License</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAPEX</td>
<td></td>
<td></td>
<td>$235</td>
</tr>
<tr>
<td>aaSIDRA</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>ACC-DWG</td>
<td></td>
<td></td>
<td>$99</td>
</tr>
<tr>
<td>ACCINFO</td>
<td></td>
<td></td>
<td>$295</td>
</tr>
<tr>
<td>CADD Sign</td>
<td></td>
<td></td>
<td>$195</td>
</tr>
<tr>
<td>C.A.T.S.</td>
<td></td>
<td></td>
<td>$295</td>
</tr>
<tr>
<td>CIRCAP</td>
<td></td>
<td></td>
<td>$45</td>
</tr>
<tr>
<td>COLDMG</td>
<td></td>
<td></td>
<td>$295</td>
</tr>
<tr>
<td>COMPL</td>
<td></td>
<td></td>
<td>$295</td>
</tr>
<tr>
<td>CORFLO</td>
<td></td>
<td></td>
<td>$400</td>
</tr>
<tr>
<td>CORSIM</td>
<td></td>
<td></td>
<td>$275</td>
</tr>
<tr>
<td>CRS</td>
<td></td>
<td></td>
<td>$295</td>
</tr>
<tr>
<td>EzHCM</td>
<td></td>
<td></td>
<td>$350</td>
</tr>
<tr>
<td>EZ-POSIT</td>
<td></td>
<td></td>
<td>$5</td>
</tr>
<tr>
<td>FLOWPRO</td>
<td></td>
<td></td>
<td>$15</td>
</tr>
<tr>
<td>FURIN</td>
<td>8.0</td>
<td></td>
<td>$295</td>
</tr>
<tr>
<td>HCM/Cinema</td>
<td></td>
<td></td>
<td>$635*</td>
</tr>
<tr>
<td>IPCAD</td>
<td></td>
<td></td>
<td>$50</td>
</tr>
<tr>
<td>ITRAF</td>
<td></td>
<td></td>
<td>$95</td>
</tr>
</tbody>
</table>

PC TRANS Software

Prices include software documentation.
TRANSPORTATION PLANNING

Advanced GNE—Advanced General Network Editor, 6.0
| Price | TP-3AW | $245 | (*$195 with purchase of GRSII)

DSS—Decision Support System, JUL88
| Price | TP-10 | $50

EZ-Turn—1.0
| Price | TP-27 | $40

HALLEY—3.2
| Price | TP-1 | $50

MicroBENCOST—1.0, rev. B
| Price | TP-26 | $75

TRANSPAP—Transportation Planning Package, 1.0
| Price | TP-6 | $60

MODE CHOICE—JUN85
| Price | TP-2 | $40

PAP—Projection Analysis Program, 1.1
| Price | TP-23 | $45

PPODS—Planning & Project Development Spreadsheets, DEC86
| Price | TP-24 | $45

ORS II—Quick Response System II, 6.0
| Price | TP-3W4 | $395

SPARKS—Smart Parking Analysis Software, 3.0
| Price | TP-21 | $395

SPF—Simplified Project Forecasting Model, AUG85
| Price | TP-6 | $60

TEAPAC/PACKAGE—Traffic Engineering Package complete package TP-18X1
| Price | $3,495

Transit Operation

ARK SEC18—Arkansas Sec. 18 Program Application, APR90
| Price | TO-10 | $40

Bus Transit Garage Requirements Model—6.0
| Price | TO-20 | $750

CAA—Cost Allocation Applications, JUL86
| Price | TO-4 | $50

CAM—Cost Allocation Model, 3.1
| Price | TO-12 | $45

CHS—Chapel Hill Scheduler, DEC84
| Price | TO-1 | $40

DAYS OFF—Days Off Calculator, 2.0 (Windows) & 3.0 (DOS)
| Price | TO-21 | $10

DEL—Disaggregate Elasticity Model, DEC84
| Price | TO-7 | $45

GFI—Freight Software Utilities
| Price | TO-24 | $5

ParaPlan—1.0
| Price | TO-25 | call us

RIMS—Ridesharing Information & Mapping System, 2.0
| Price | TO-19 | $30

SECU15 DATA—National Transit Database Tables for years 1981 through 1995
| Price | TO-11 | $20 yr.

SP-I—Spreadsheet Applications-I, FEB85
| Price | TP-3 | $40

TRANSIT APPS—Transit Spreadsheet Applications, 1.0
| Price | TO-6 | $40

TRPCC—Transit Route Planning C.A.I. Course, APR86
| Price | TO-9 | $37.50

Transportation Planning

PC-TRANS software
has initiated a program called Strategic Work Zone Analysis Tools (SWAT). As part of this program, the following four new tools for the design and operation of work zones are to be developed:

- Work Zone Delay Impact Analysis spreadsheet;
- Expert System software program;
- Cost/Alternative Analysis spreadsheet; and
- Detailed simulation model

QuickZone, developed by Mitretek Systems, is the first product of SWAT program. It compares the traffic impacts for work zone mitigation strategies and estimates the costs, traffic delays, and potential backups associated with these impacts. The software can help State and local traffic, construction, operations, and planning staff, as well as construction contractors, be aware of the effect that different work zone phasing has on the motorists from both a cost and delay standpoint.

The software provides information in a spreadsheet form and can accommodate networks with up to 100 nodes and 200 links. To run the program, the user would enter data on the planned work zone such as location, projected detour routes, anticipated traffic volumes and construction dates and times. The program then displays the amount of delay in vehicle hours, the maximum length of the projected traffic queue, and the costs associated with the work activity.

QuickZone can also analyze the advantages of various strategies for minimizing the projected traffic delays. These mitigation strategies might include retiming signals on detour routes to help traffic flow more smoothly, planning a media campaign to publicize the planned work zones, or using traveler information systems that allow drivers to plan ahead and choose other routes if possible. Requires: Windows 95 and Microsoft Excel 97 or higher. Program run times change from 3 minutes on a computer with a Pentium 166 to 1 minute with a Pentium 400.

TE-73, version 1.0, $195

TE-74, WinTURNS

WinTURNS, developed by Rick Ernstmeyer, is a shareware program designed to create turning movement diagrams. It uses an iterative approach to balance the inflows and outflows of an intersection as described in NCHRP Report 255, *Highway Traffic Data for Urbanized Area Project Planning and Design*, Chapter 8. This same technique works well when expanding observed short-term manual intersection counts to turning movement diagrams on rural intersections. In both scenarios, your final result is a solution that shows the distribution of traffic by individual turning movements through an intersection.

The program was created to handle intersections of 3 to 8 legs, with the ability to select from any of the 8 standard direction codes. The form will only display boxes for the number of legs in your intersection. It calculates and displays the results for the current year’s Average Daily Traffic (ADT), some forecast year’s ADT and some year’s Design Hourly Volume (DHV).

WinTURNS is broken down into 9 different forms:

- introductory form;
- initial data entry form;
- forms to enter observed or estimated turning information by individual movement;
- forms where you can ‘lock in’ individual movements;
- form showing, in effect, a trip table of the results; and
- form showing the results as a turning movement diagram.

Requires: This program was created with Visual Basic 5.0 and is a 32-bit application. As such, it can only be run on either the Windows 9x or Windows NT operating systems. It cannot be run on a 16-bit Windows system. It was developed on a machine running Windows 95, with 32 Meg of RAM and a 133 MHz processor. It was tested on a machine running Windows NT. It is required that you are using a minimum screen resolution of 800x600. Higher resolution is recommended.

TE-74, version 1.0/sw, $5
PC-TRANS Order Form

- 2002 PC-TRANS Software Catalog (hard copy, no charge)

- PC-TRANS Software

<table>
<thead>
<tr>
<th>Product #</th>
<th>Product Name</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- See attached sheet for additional orders

Subtotal: _____________________

If ordering in Kansas, add 7.3% sales tax (or provide your KS Tax Exempt #)____________________

For orders outside North America only: Calculate shipping charge on a per unit basis at 25% of unit list price, or $40, whichever is less. Enter sum of charges here (minimum $10):

Order processing fee: _____________________

TOTAL: _____________________

- Add my name to receive pc-trans magazine
- Remove my name from your mailing list
- Address correction

Code (if any; see mailing label)

Name

Title

Agency

Department

Street Address (we cannot ship to a P.O. box)

City, State, Zip

Phone No. Fax No.

E-mail address

- I have enclosed my check drawn on a U.S. bank or a Postal Money Order, made payable to "Kansas University Transportation Center."

- Agency purchase order attached. PO. # _____________________

(Please provide billing address if different from shipping address.)

- Charge my credit card. MasterCard VISA

 American Express Discover Card

Card# _____________________ Expires___________

Name as appears on card _____________________

- Please ship my order overnight delivery and bill me for the charges.

Mail this form along with payment to:

PC-TRANS, Kansas University Transportation Center
1530 W. 15th Street, Room 2011, Lawrence, Kansas 66045-7609
or fax copy of form to fax no. (785) 864-3199