All schools & programs > School of Engineering >

Engineering Physics Undergraduate Program

Visit their website » Print...

Principal Course Distribution Requirement

Principal courses offer introductions to the breadth of disciplines in the College. They acquaint students with the subject matter in an area, with the types of questions that are asked about that subject matter, with the knowledge that has been developed and is now basic to the area, and with the methods and standards by which claims to truth are judged.

Students must complete courses in topical groups in three major divisions (humanities, natural sciences and mathematics, and social sciences). For the B.A., three courses are required from each division, with no more than one course from any topical group. The B.G.S. requires two courses from each division, with no more than one from any topical group. To fulfill the requirement, a course must be designated as a principal course according to the codes listed below.

These are the major divisions, their topical subgroups, and the codes that identify them:


  • HT: Historical studies
  • HL: Literature and the arts
  • HR: Philosophy and religion

Natural Sciences and Mathematics

  • NB: Biological sciences
  • NE: Earth sciences
  • NM: Mathematical sciences
  • NP: Physical science

Social Sciences

  • SC: Culture and society
  • SI: Individual behavior
  • SF: Public affairs

No course may fulfill both a principal course distribution requirement and a non-Western culture or second-level mathematics course requirement. Laboratory science courses designated as principal courses may fulfill both the laboratory science requirement and one of the distribution requirements. No free-standing laboratory course may by itself fulfill either the laboratory science requirement or a principal course requirement. Students should begin taking principal courses early in their academic careers. An honors equivalent of a principal course may fulfill a principal course requirement.

View all approved principal course distribution courses »

Non-Western Culture Requirement

A non-Western culture course acquaints students with the culture, society, and values of a non-Western people, for example, from Asia, the Pacific Islands, the Middle East, or Africa. Students must complete one approved non-Western culture course.

One approved non-Western culture course is required. Occasionally courses with varying topics fulfill the non-Western culture course requirement. See the Schedule of Classes for details. These courses are coded NW.

View all approved non-Western culture courses »

Transfer and Earned Credit Course Codes

These codes are used to evaluate transfer credit and to determine which academic requirements a course meets.

  • H: Humanities
  • N: Natural Sciences and Mathematics
  • S: Social Sciences
  • W: World Civilization and Culture
  • U: Undesignated Elective Credit (course does not satisfy distribution requirement)

All Engineering Physics courses

Show courses in EPHX with a course number to
worth in .

There are 21 results.

This course is for students seeking Departmental Honors in Astronomy, Engineering Physics, or Physics to fulfill the undergraduate research requirement. At the completion of the required four hours of total enrollment, a written and oral report of the research is required. (Same as PHSX 501.) Prerequisite: Junior/Senior standing in Astronomy, Engineering Physics, or Physics. IND
View current sections...
This course is for students seeking to fulfill the undergraduate research requirement. Students are expected to participate in some area of ongoing research in the department, chosen with the help of their advisor. At the end of the term, students will present their results in a seminar to other students and faculty. (Same as ASTR 503 and PHSX 503.) Prerequisite: Junior/Senior standing in Astronomy, Engineering Physics, or Physics, or permission of instructor. IND
View current sections...
An introduction to quantum mechanics, emphasizing a physical overview. Topics should include the formalisms of non-relativistic quantum mechanics, the 3-dimensional Schrodinger equation with applications to the hydrogen atom; spin and angular momentum; multi-particle systems of Fermi-Dirac and Bose-Einstein particles; time-independent perturbation theory. (Same as PHSX 511.) Prerequisite: PHSX 313 and MATH 290. LEC
View current sections...
A laboratory course emphasizing experimental techniques and data analysis, as well as scientific writing and presentation skills. Experiments will explore a range of classical and modern physics topics. (Same as PHSX 516.) Prerequisite: PHSX 313, EPHX 316, and EPHX 521. (EPHX 521 may be taken concurrently.) LAB
View current sections...
Applications of modern mathematical methods to problems in mechanics and modern physics. Techniques include application of partial differential equations and complex variables to classical field problems in continuous mechanics, unstable and chaotic systems, electrodynamics, hydrodynamics, and heat flow. Applications of elementary transformation theory and group theory, probability and statistics, and nonlinear analysis to selected problems in modern physics as well as to graphical representation of experimental data. Prerequisite: PHSX 313 and MATH 320 or permission of instructor. (Same as PHSX 518.) LEC
View current sections...
Newton's laws of motion. Motion of a particle in one, two, and three dimensions. Motion of a system of particles. Moving coordinate systems. (Same as PHSX 521.) Prerequisite: PHSX 211 or PHSX 213, MATH 223, MATH 290 and MATH 220 or MATH 320. LEC
View current sections...
The properties of electric and magnetic fields, including electrostatics, Gauss' Law, boundary value methods, electric fields in matter, electromagnetic induction, magnetic fields in matter, the properties of electric and magnetic dipoles and of dielectric and magnetic materials. (Same as PHSX 531.) Prerequisite: PHSX 212 or PHSX 214, PHSX 521 or special permission, MATH 223, MATH 290 and MATH 220 or MATH 320. LEC
View current sections...
A laboratory course that explores the theory and experimental techniques of analog and digital electronic circuit design and measurements. Topics include transient response, transmission lines, transistors, operational amplifiers, and digital logic. (Same as PHSX 536.) Prerequisite: PHSX 212 or PHSX 214, MATH 223 and MATH 290. PHSX 313 and 316 recommended. LEC
View current sections...
Different topics will be covered as needed. This course will address topics in physics and astrophysics not covered in regularly offered courses. May be repeated if topic differs. (Same as PHSX 600.) Prerequisite: Permission of instructor. LEC
View current sections...
A laboratory course emphasizing the application of physical principles to the design of systems for research, monitoring, or control. Topics include the use of microcomputers as controllers, interfacing microcomputers with measurement devices, and use of approximations and/or computer simulation to optimize design parameters, linear control systems, and noise. (Same as PHSX 601.) Prerequisite: Twelve hours of junior-senior credit in physics or engineering, including one laboratory course. LEC
View current sections...
An introduction to the use of numerical methods in the solution of problems in physics for which simplifications allowing closed-form solutions are not applicable. Examples are drawn from mechanics, electricity, magnetism, thermodynamics, and optics. (Same as PHSX 615.) Prerequisite: PHSX 313, MATH 320 or equivalent, and EECS 138 or equivalent. LEC
View current sections...
Continuation of PHSX 521. Lagrange's equations and generalized coordinates. Mechanics of continuous media. Tensor algebra and rotation of a rigid body. Special relativity and relativistic dynamics. (Same as PHSX 621.) Prerequisite: EPHX 521 or PHSX 521. LEC
View current sections...
An introduction to basic fluid mechanics in which fundamental concepts and equations will be covered. Topics will include hydrostatics, hydrodynamics, wave propagation in fluids, and applications in the areas such as astrophysics, atmospheric physics, and geophysics. (Same as PHSX 623.) Prerequisite: PHSX 212 or PHSX 214, MATH 223, and MATH 290. LEC
View current sections...
Maxwell's equations, wave propagation, optics and waveguides, radiation, relativistic transformations of fields and sources, use of covariance, and invariance of relativity. Normally a continuation of PHSX 531. (Same as PHSX 631.) Prerequisite: EPHX 531 or PHSX 531. LEC
View current sections...
Experimental methods in nuclear physics, elementary concepts and simple considerations about nuclear forces, alpha and beta decay, gamma radiation, nuclear structure, and reaction systematics. (Same as PHSX 641.) Prerequisite: PHSX 313 and PHSX 611. LEC
View current sections...
Geometric optics. Wave properties of light: interference, diffraction, coherence. Propagation of light through matter. Selected topics in modern optics, e.g., lasers, fibers. (Same as PHSX 655.) Prerequisite: PHSX 313 and PHSX 316. LEC
View current sections...
Properties and interactions of quarks, leptons, and other elementary particles; symmetry principles and conservation laws; broken symmetry; gauge bosons; the fundamental interactions, grand unified theories of strong, electromagnetic, and weak interactions; the cosmological implications of elementary particle physics. (Same as PHSX 661.) Prerequisite: PHSX 313 and MATH 320. LEC
View current sections...
Development of thermodynamics from statistical considerations. Elementary techniques of calculating thermodynamic properties of systems. Application to classical problems of thermodynamics. Elementary kinetic theory of transport processes. Fermi-Dirac and Bose-Einstein systems. (Same as PHSX 671.) Prerequisite: EPHX 611. LEC
View current sections...
Properties of common types of crystals and amorphous solids. Lattice vibrations and thermal properties of solids. Electrons and holes in energy bands of metals, semiconductors, superconductors, and insulators. (Same as PHSX 681.) Prerequisite: PHSX 313 and PHSX 611. LEC
View current sections...
An introduction to radiation processes, thermal processes, and radiative transfer in stellar atmospheres and the interstellar medium. (Same as ASTR 691 and PHSX 691.) Prerequisite: PHSX 313 or consent of instructor. LEC
View current sections...
An overview of topics relevant to gravitation and modern cosmology: special relativity, tensor notation, the equivalence principle, the Schwarzchild solution, black holes, and Friedmann models. Cosmic black body radiation, dark matter, and the formation of large-scale structure. The idea of quantum gravity and an introduction to the current literature in cosmology. (Same as PHSX 693.) Prerequisite: PHSX 313 and MATH 320. LEC
View current sections...

The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access,, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.