All schools & programs >

School of Engineering

Visit their website » Print...

Principal Course Distribution Requirement

Principal courses offer introductions to the breadth of disciplines in the College. They acquaint students with the subject matter in an area, with the types of questions that are asked about that subject matter, with the knowledge that has been developed and is now basic to the area, and with the methods and standards by which claims to truth are judged.

Students must complete courses in topical groups in three major divisions (humanities, natural sciences and mathematics, and social sciences). For the B.A., three courses are required from each division, with no more than one course from any topical group. The B.G.S. requires two courses from each division, with no more than one from any topical group. To fulfill the requirement, a course must be designated as a principal course according to the codes listed below.

These are the major divisions, their topical subgroups, and the codes that identify them:

Humanities

  • HT: Historical studies
  • HL: Literature and the arts
  • HR: Philosophy and religion

Natural Sciences and Mathematics

  • NB: Biological sciences
  • NE: Earth sciences
  • NM: Mathematical sciences
  • NP: Physical science

Social Sciences

  • SC: Culture and society
  • SI: Individual behavior
  • SF: Public affairs

No course may fulfill both a principal course distribution requirement and a non-Western culture or second-level mathematics course requirement. Laboratory science courses designated as principal courses may fulfill both the laboratory science requirement and one of the distribution requirements. No free-standing laboratory course may by itself fulfill either the laboratory science requirement or a principal course requirement. Students should begin taking principal courses early in their academic careers. An honors equivalent of a principal course may fulfill a principal course requirement.

View all approved principal course distribution courses »

Non-Western Culture Requirement

A non-Western culture course acquaints students with the culture, society, and values of a non-Western people, for example, from Asia, the Pacific Islands, the Middle East, or Africa. Students must complete one approved non-Western culture course.

One approved non-Western culture course is required. Occasionally courses with varying topics fulfill the non-Western culture course requirement. See the Schedule of Classes for details. These courses are coded NW.

View all approved non-Western culture courses »

Transfer and Earned Credit Course Codes

These codes are used to evaluate transfer credit and to determine which academic requirements a course meets.

  • H: Humanities
  • N: Natural Sciences and Mathematics
  • S: Social Sciences
  • W: World Civilization and Culture
  • U: Undesignated Elective Credit (course does not satisfy distribution requirement)

All Engineering courses

Show courses in ENGR with a course number to
worth in .

There are 632 results.

Provides an in-depth knowledge of 1) the process of developing a research question to be addressed with computer simulation, 2) various techniques for medical imaging to obtain model geometries (including hands-on experience with low-field MR imaging), 3) image segmentation techniques, 4) issues affecting geometric accuracy in model building, 5) the determination and specification of loading and/or kinematic boundary conditions, 6) the interpretation of model results in the context of the model limitations and the medical application. Knowledge and/or experience with finite elements is desirable, but not required. Prerequisite: ME 311 and ME 520 or equivalent. LEC
View current sections...
An introduction to the fundamentals of biofluid dynamics, and the application of these principles to a variety of biological flows. Fluid flows in physiology, drug delivery, and biotechnology are investigated at a variety of scales, ranging from subcellular to organ groups. Topics include non-Newtonian constitutive equations, solution techniques, and principles of modeling and simulating. Prerequisite: ME 208 and ME 510 or equivalents. LEC
View current sections...
A course on the dynamics and motor control of human and animal motion. The course will focus on applying mechanical principles of dynamics, lumped parameter systems, and control theory to problems in biomechanics. Topics include muscle mechanics and dynamics, reflex and voluntary control, proprioception, anatomy of the muscular and nervous systems, and system dynamics in locomotion and other movements. Prerequisite: ME 520 or equivalent. Corequisite: ME 682 or permission of instructor. LEC
View current sections...
This course covers the use of engineering systems modeling approaches to understand the function of physiological systems. Systems covered include the cardiovascular system, the respiratory system, the renal system, the gastrointestinal system, and the musculoskeletal system. Prerequisite: ME 510, ME 520, Physics 212 or permission of instructor. LEC
View current sections...
Introduction to methods of taking medical product inventions from conception to initial stage production. Students work in cross-functional teams to investigate development potential of inventions. Topics covered include product development processes, regulatory issues with the FDA, quality system requirements, SBIR/STTR funding pathways, biomaterial and biomechanics issues in medical product design, and ethical considerations. Prerequisite: Senior or graduate student standing in engineering, business, industrial design, or an applicable life science field and permission of instructor. LEC
View current sections...
An introductory course on biomaterials science and consideration of biomaterials in the design of biomedical implants. Topics including ethical considerations in biomaterials research and the role of the FDA in medical device design are also presented. Prerequisite: ME 306. LEC
View current sections...
The formulation of steady- and unsteady-state conduction heat transfer problems and their solution by analytical and numerical methods. Prerequisite: ME 612 or equivalent. LEC
View current sections...
The formulation of steady and unsteady radiation heat transfer problems and their solution by analytical and numerical methods. Prerequisite: ME 612 or equivalent. LEC
View current sections...
A study of methods of synthesis of mechanisms from kinematic specifications. Prerequisite: ME 520. LEC
View current sections...
Advanced courses on special topics of current interest in mechanical engineering, given as the need arises. Prerequisite: Approval of instructor. RSH
View current sections...
Design and analysis of systems and components, using both individual and team projects. Engineering experience in planning, execution and reporting on selected practical engineering situations. Prerequisite: ME 628 or equivalent. LEC
View current sections...
Lectures and discussion on ethical issues in the conduct of a scientific career, with emphasis on practical topics of special importance in bioengineering. Topics include the nature of ethics, the roles of the scientist as a reviewer, entrepreneur, employer and teacher, research ethics in the laboratory, social responsibility and research ethics regulation. (Same as BIOE 801.) Prerequisite: Permission of instructor. LEC
View current sections...
Advanced design and development of microprocessor based mechanical systems. Individual and team projects involving the development and integration of hardware and software into a "smart" system which includes the sensing, processing, and controlling functions are accomplished. Emphasis is on the use of the latest sensors and development tools. Prerequisite: Permission of instructor. LEC
View current sections...
Topics include kinematic and dynamic behavior of fluids, derivation of Navier-Stokes equations, flow classification, solutions of viscous and inviscid flows for simple geometries, potential flow theory and laminar and turbulent boundary layer theory. Prerequisite: ME 510 or equivalent. LEC
View current sections...
The formulation and solution of steady and unsteady convective heat, mass, and momentum transfer problems. Topics include boundary layers, duct flows, natural convection with and without phase change, development of analogies, transport properties, numerical methods. Prerequisite: ME 612 or equivalent. LEC
View current sections...
The fundamentals of the finite-difference method are presented and applied to the formulation of numerical models for heat and momentum transfer. The accuracy, stability, and computational efficiency of different algorithms are analyzed. Computer programs are developed for classical benchmark problems. Prerequisite: ME 508, ME 510, and ME 612 or equivalents. LEC
View current sections...
Principles of Continuum Mechanics for solids, fluids, and gases. Frames of references, measures of motion, deformation, strains, stresses, their rates, objectivity and invariance. Conservation laws, constitutive equations, equations of state and thermodynamic principles for developing mathematical models of continuum matter. Theoretical solutions of model problems. Corequisite: MATH 647 or ME 702; or permission of instructor. LEC
View current sections...
Fundamental principles of Continuum Plasticity, measures of plastic strains, stresses and constitutive equations for flow theory of plasticity. Internal variable theory of thermo-mechanical behaviors and endochronic theory of plasticity and viscoplasticity. Anisotropic plasticity and advanced topics. Continuum mechanics principles for viscoelastic solids with emphasis on constitutive equations. Development of complete mathematical models and solutions of selected model problems. Prerequisite: ME 840 or equivalent. LEC
View current sections...
An introductory course in the analysis of the mechanical behavior of materials modeled on the continuum assumption. The course will provide background on soft tissue properties and will focus on the tools necessary to model soft tissues, including the essential mathematics, stress principles, kinematics of deformation and motion, and viscoelasticity. Prerequisite: ME 311 or equivalent. LEC
View current sections...
An analytical or experimental study of problems or subjects of immediate interest to a student and faculty member and which is intended to develop students capability for independent research or application of engineering science and technology. Maximum credit toward any degree is three hours unless waived in writing by the departmental chairperson. Prerequisite: Approval of instructor. RSH
View current sections...
Finite element method for solid mechanics, heat transfer, fluid mechanics, and dynamics. Modeling techniques, software implementation, and solution of problems. Prerequisite: ME 508 or equivalent. LEC
View current sections...
Advanced treatment of dynamic and transient response for linear and nonlinear problems in solid mechanics. Formulation and solution of time dependent linear and nonlinear field problems using finite element techniques. Prerequisite: ME 861 or equivalent. LEC
View current sections...
The generation of Finite Element meshes in the analysis and simulation of engineering systems. Important topics are treated such as initial mesh generation and refinements (i.e. geometric modeling and mesh adaptivity or grading), choice of type of element, and assessment of solution accuracy (i.e. error estimation). Assignments include solving problems using FE software. Prerequisite: ME 661, ME 861, or equivalent. LEC
View current sections...
Advanced methods in the modeling, analysis and design of linear and nonlinear control systems. Topics include but not limited to digital controls methods, energy-based modeling, and state-space methods. Prerequisite: ME 682. LEC
View current sections...
Advanced courses on special topics of current interest in mechanical engineering, given as the need arises. Prerequisite: Approval of instructor. RSH
View current sections...
An analytical or experimental investigation of an engineering problem requiring independent research. If the thesis option is selected six credit hours are required for the degree. If the project option is selected three credit hours are required for the degree. (See requirements for the Master of Science degree for additional details.) THE
View current sections...
A twelve month internship in industry or government for doctor of engineering candidates. The student is supervised by a preceptor at the internship site. Bimonthly progress reports are to be filed with the student's advisory committee. One credit hour per month of internship. FLD
View current sections...
Advanced treatment of finite element techniques for structural analysis including material and geometric non-linearity as well as large strain deformation. Prerequisite: ME 861 or equivalent. LEC
View current sections...
Advanced treatment of p-Approximation, error estimation, and other advanced topics in the finite element method. Prerequisite: ME 861 or equivalent. LEC
View current sections...
An overview of classical averaging and homogenization methods, as well as current multi-scale modeling techniques for the analysis of the micro- and nano-mechanics of materials. Models and numerical techniques are introduced based on continuum as well as particle descriptions. Assignments include the simulation of micro- and nano-mechanics problems by using existing finite element software and molecular dynamics packages. Prerequisite: ME 861 and ME 840. LEC
View current sections...
Advanced courses on special topics of current interest in mechanical engineering, given as the need arises. Prerequisite: Approval of instructor. RSH
View current sections...
An analytical or experimental investigation of an engineering problem requiring independent research. Twenty four hours as a minimum are awarded for the Ph.D. dissertation. An original contribution suitable for publication in a referred journal is required of Ph.D. candidates. Twenty four credit hours as a minimum are awarded for the D.E. project. The D.E. candidate will have technical and supervisory responsibility for a multiperson project and a formal final project report suitable for publication is required. THE
View current sections...
 1 2 3 4 5 6 7

The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.