Stabilization Policy as Bifurcation Selection: Would Keynesian Policy Work if the World Really Were Keynesian?

William A. Barnett and Yijun He
Department of Economics
Washington University
St. Louis, MO 63130
{barnett,he}@wuecon.wustl.edu

Abstract

The macroeconomic concept of “stabilization policy” implicitly assumes that the macroeconomy is unstable without imposition of a policy. Hence selection of a “stabilization policy” can be viewed as selection of a policy to bifurcate the system from an unstable to a stable operating regime. The literature on dynamics of high dimensional systems suggests that successful bifurcation selection is challenging. As an experiment to investigate this point of view, we use the continuous time UK dynamic macroeconomic model, since it is a second order differential equation system that has properties that are well suited to the purpose. The model’s published point estimates are in the unstable region, and the model’s Keynesian frictions provide the opportunity for Pareto-improving stabilization policy intervention. Under strongly simplifying assumptions intended to produce the least difficult bifurcation selection, we explore the problem of selecting a successful bifurcation policy to stabilize the system. Under assumptions designed to be most favorable to Keynesian stabilization policy, we find that policies that would produce successful bifurcation to stability are very complicated. We also find that less complicated policies based upon reasonable economic intuition can be counterproductive, since such policies can contract the size of the stable subset of the parameter space.

Keywords: Stability, bifurcation, macroeconometric systems

JEL Classification: C52, C32, E61
1 Introduction

1.1 Motivation

The concept of “stabilization policy” is fundamental to some traditions in macroeconomics, especially to much of Keynesian macroeconomics. Yet the concept rarely is rigorously defined, and has become associated with many conflicting objectives and views of the economy. In the midst of this ambiguity, one view has become common: if it were not for Lucas (1976) critique complications and the time inconsistency of many proposed “stabilization policies,” and if the macroeconomy really were unstable—then the conduct of a successful “stabilization policy” to “fine tune” the economy would likely not be too difficult. Stabilization policy could be conducted successfully by agreeing on a final target and an instrument, and using the instrument in an active countercyclical manner to offset fluctuations in the final target of policy.

It is our position that the very choice of the words “stabilization policy” implies that without “policy” the macroeconomy would be unstable. Stabilization policy therefore must be a policy that moves the economy from an unstable operating regime into a stable operating regime. In the language of mathematical dynamics, stabilization policy is a policy that bifurcates the system by moving the parameters from a point at which solutions are unstable to a point at which solutions are stable. This would require crossing a bifurcation boundary separating a stable subset from an unstable subset of the parameter space. Hence the search for a stabilization policy can be defined to be a particular kind of bifurcation selection.

Attaching a policy feedback rule to the system increases the dimension of the parameter space, since the parameters of the feedback rule are added to the private sector’s parameters. A result is necessary movement of the parameter space’s bifurcation subsets, including the subset that supports stable solutions. This fact remains true even if the parameters of private sector tastes and technology are unchanged. Hence in principle, it is possible for the introduction of a policy feedback rule to produce successful bifurcation to stable solutions, even if the economy’s deep parameters are unchanged. It is not the parameters that move, but rather the bifurcation subsets.

The Lucas critique tells us that attaching a policy rule (with or without feedback) to the economy can cause structural parameters to move, even though the deep parameters have not moved. As a result, evaluation of possible policies by simulation with estimated econometric models having constant structural parameters can produce misleading results. At a later date, we plan to extend our results to an Euler equations model that holds deep parameters constant without implying that structural parameters are unaffected by policy. We anticipate that selection of a successful bifurcation policy rule in that context will be even more difficult than in the context explored in the current paper. In the current paper we assume that the effect of policy on the structural parameters of private sector equations is fortuitously negligible for our experiment. We do not thereby imply that we believe this to be true in general, but rather we ask a “what if” question. In particular, we investigate how difficult it would be to locate a successful policy bifurcation rule, if the Lucas critique coincidentally were not an obstacle.

In this context, an open loop rule has very little chance of producing successful bifurcation to stability. Hence we are considering only closed loop policy rules with feedback. The use of
such policy rules produces the risk of time inconsistency, especially when the rule is selected by optimal control. See Kydland and Prescott (1977). Clearly if time inconsistency were produced by the policy, the chance of successful bifurcation to a welfare improving stable solution would be decreased. Again we shall assume away that serious complication. We shall assume that the economy is in reputational equilibrium, and no actions or policies adopted by the government can disturb the private sector’s trust in the government. Again we do not mean to imply that we believe the policies we consider would necessarily have that result, but again we are asking a “what if” question. If the possible complications produced by time inconsistency fortuitously did not arise, would the selection of a successful bifurcation policy be difficult?

In summary, we assume that the structure of the economy and its parameters are known by the government with certainty, Lucas critique problems are negligibly small, and time inconsistency is not produced by the policies that we consider. Under these strongly simplifying assumptions, the selection of a successful bifurcation policy cannot be viewed to be robust to specification errors in the model within which the selection was made. Hence if selection of a successful bifurcation policy is difficult under our highly simplifying assumptions, we must conclude that selection of a successful bifurcation policy in the real world would be even more difficult.

Indeed we do find that locating successful bifurcation rules is difficult, even under our assumptions. While this conclusion may not seem surprising to mathematicians with expertise in dynamic bifurcation theory, we believe that this conclusion is at odds with widely held beliefs among some macroeconomists and among many applied policy analysts.

1.2 Earlier Research

In Barnett and He (1999), we studied bifurcation phenomena in continuous time macroeconomic models to determine the degree to which Grandmont’s (1985) findings with a simple Cobb Douglas overlapping generations model are relevant to less restrictive models. It has often been asked whether the complex dynamics attained by Grandmont in multiple bifurcation regimes could be attained with a more general model in a manner that would be consistent with more reasonable settings of elasticities for tastes and technology. In addition, since all solutions in Grandmont’s model are Pareto optimal, the policy relevance of complex dynamics in his model is not clear. It has sometimes been asked whether a policy relevant model might present a more important role for complex dynamics and for the existence of multiple bifurcation regimes. See, e.g., Woodford (1989), who speculates that the existence of complex dynamics may increase the potentially useful role of active policy, if imperfections exist in financial markets. Policy relevance also is implied by the recent paper by Goenka, Kelly, and Spear (1998).

Barnett and Chen (1988) and Barnett et al. (1997), among others, have tested for chaos and for other forms of nonlinearity in univariate time series. Their findings, however, do not condition upon an economic model, and hence cannot isolate the source of instability to be within the economy. If there were chaos in the weather, those chaotic shocks to the economy would be the source of the chaos observed in economic time series. Similarly the many findings of nonlinearity in univariate economic time series could have been caused by nonlinear shocks
from the weather or other such sources external to the economy. Hence further progress in
this area requires the ability to condition upon an economic model. Mathematical solution
for the boundary of the chaotic subset of the parameter space currently is not possible with
models having more than three parameters, and at present we are not seeking to solve for
that subset by numerical methods. But we do find that numerical solution for bifurcation
boundaries between the stable subset and broader classes of nonlinear dynamic behavior can
be accomplished. Although nonlinearity is central to this literature, our results currently are
inherently local, since our approach is based upon a local analysis of a nonlinear model.

Extending Grandmont's results to more general and empirically plausible stochastic dynamic
general equilibrium models is extremely difficult, and presents problems that currently cannot
be solved analytically by methods available to mathematicians. With the implied systems of
nonlinear Euler equations, even numerical methods have so far not been successfully applied to
locating and characterizing bifurcation boundaries for such direct extensions of Grandmont's
model. But with some policy relevant structural macroeconometric models, numerical methods
for locating bifurcation boundaries currently are applicable. For that reason, we have chosen
at present to work with a structural macroeconometric model. Although this approach does
not permit us to access the deep parameters of tastes and technology, we nevertheless can
produce closer connection to theory than would be possible with a more conventional discrete
time macroeconometric model, by using a continuous time macroeconometric model. For that
reason, in the prior paper and in this paper we currently are applying our numerical procedures
to the Bergstrom, Nowman, and Wymer (1992) UK continuous time second order differential
equations macroeconometric model. Although we are in no sense advocating that model, we
do believe that it is designed in a manner that is particularly favorable to the objective of
producing welfare improving stabilization policy. At a later date, we contemplate extending
these procedures to apply to a system of Euler equations derived from a reasonably plausible
stochastic dynamic general equilibrium model, although we believe that such models have a
less "Keynesian" character and hence would render successful bifurcation selection even more
difficult.

1.3 Objectives

In our prior paper, we demonstrated the existence of bifurcation boundaries within the econom-
ically feasible subset of the parameter space. Since the point estimates of the parameters are
within the unstable region, it is natural to ask whether or not the null hypothesis of stability
can be rejected. In this paper we have two primary objectives: (1) we explore the question of
whether or not we can reject the hypothesis that the true values of the parameters are actually
across a bifurcation boundary in the stable region. (2) We explore the ability of policy control
rules to move the bifurcation boundaries in such a manner as to include within the stable region
the existing unchanged point estimates of the parameters. We also investigate the nature of the
model's dynamics on bifurcation boundaries. The literature on Hopf bifurcation in economics
has placed particular importance on the behavior of the system on or near those boundaries,
despite the fact that those boundaries are measure zero.

The second objective is the paper's primary focus: determination of the implications of
augmenting the model’s equations by a policy feedback rule. According to the Lucas critique, the augmentation of Euler equations with such a feedback rule can alter structural parameters. We ask whether the use of such feedback rules is as straightforward as previously believed, even if their use does not affect structural parameters. We find the selection of stabilization policy to be more easily counterproductive than previously believed, even without Lucas critique problems affecting the selection. When we consider the use of optimal control theory to choose feedback rules, the chance of success increases, but the risk of time inconsistency increases, and the existence of specification error in the model could undermine the appearance of policy success within the model. In short, we find that under circumstances intended to be particularly favorable to stabilization policy—i.e., a true Keynesian world devoid of the currently known complications—active “fine tuning” stabilization policy is very difficult to design and can be counterproductive.

The reason for the first objective is clear. But how to do it is less than obvious. The various subsets of the parameter space bounded by bifurcation boundaries and by economic feasibility constraints are defined by nonlinear inequality constraints. Such inequality constraints truncate sampling distributions. Not only were some of the parameter estimates close to boundaries, but in fact some of the parameter estimates were on boundaries. These facts violate regularity conditions for most sampling theoretic hypothesis testing procedures. While such methods as Kuhn-Tucker tests exist to deal with inequality constraints, those tests are available only for much simpler classes of models than we are using. While in principle, a Bayesian approach is possible, the application of Bayesian methods with such high dimensional irregular shaped sets is prohibitively challenging at the present time. In addition, the existing parameter estimates reported for the UK model by Bergstrom, Nowman, and Wymer (1992) were provided with standard errors but not with a full covariance matrix. Hence we do not have available the covariances between those estimators. Under these adverse circumstances, we limit our statistical inference to the use of the confidence intervals about the individual parameter estimates, and we produce the region defined by the Cartesian product of those intervals. The resulting Cartesian product region is centered about the point estimate, which is in the unstable region. Determination of the true confidence ellipsoid is beyond the scope of this study. In effect, what we do in this regard is to reveal and explore the nature of the information available from the existing published standard errors. That information is made available in the appendix of this paper.

Although we cannot provide a truly convincing test of the hypothesis of instability, we view completion of a formal test to be unnecessary to our objectives. We are asking a question about policy under the assumption of instability. Hence we are conditioning upon the hypothesis of instability. Our weak empirical results on that hypothesis only are intended to support our choice of model for this experiment. That model’s published point estimates indeed are in the unstable region, and we find no statistical evidence that would render conditioning upon instability as an assumption to be inconsistent with the model or the data. But again, we are not advocating the model or its instability inference. We are conducting an experiment under assumptions intended to be particularly favorable to the introduction of Keynesian “stabilization policy.” In short, we are asking whether Keynesian stabilization policy could reasonably be expected to be successful, if the world really were a Keynesian world.
1.4 Background

Much research effort has been devoted to analyzing economic dynamics. One particular area of interest is the analysis of bifurcation and chaotic phenomena in economic systems [see, for example, Barnett et al. (1996), Gandolfo (1996), Medio (1992), and Wyner (1997)]. It has been demonstrated that economic systems exhibit many types of bifurcations such as pitchfork bifurcations in the tatonnement process [see, Bala (1997) and Scarf (1960)], transcritical bifurcations in the Bergstrom, Nowman and Wymer continuous time macroeconometric model [Barnett and He (1999)], Hopf bifurcations in growth models [e.g., Benhabib (1979), Boldrin and Woodford (1990), Dockner and Feichtinger (1991), and Nishimura and Takahashi (1992)], and codimension two bifurcations in Barnett and He (1999). The theories of bifurcations and chaos in economics are described in several textbooks such as Gandolfo (1996), Medio (1992), and Puu (1991).

Bifurcations exist in both discrete time models [see, for instance, Boldrin and Woodford (1990) and Gandolfo (1996)] and continuous time models [e.g., Barnett and He (1999), Gandolfo (1996), and Medio (1992)]. Recently, there has been increasing interest in continuous time macroeconometric models since such models in Keynesian economics have several advantages, including higher modeling accuracy and the capability of forecasting the continuous time path of the variables [see, Bergstrom (1996), Bergstrom and Wyner (1976), Bergstrom et al. (1992), Nieuwenhuis and Schoonbeek (1997), and Wyner (1997)]. Bergstrom (1996) provides an excellent survey of research advances in continuous time macroeconometric models. Continuous time models have been established for several countries including the UK and the US [see, for example, Bergstrom (1996)]. A typical feature of these models is that parameters are estimated to be in the unstable region, but close to the boundary with the stable region [see, for example, Bergstrom et al. (1992) and Barnett and He (1999)]. In addition, these models contain adjustment frictions in many equations, and hence do not necessarily produce Pareto optimal solution paths. For these reasons, these models are especially well suited to the investigation of Keynesian stabilization policy. In short, these models postulate a Keynesian world with rigidities and with instability of solution paths at estimated parameter values.

Structural analysis of continuous time models has been considered in Gandolfo (1992) and Nieuwenhuis and Schoonbeek (1997). Recently, Barnett and He (1999) investigated bifurcation phenomena in the Bergstrom, Nowman and Wymer continuous time macroeconometric model of the United Kingdom. We found that both transcritical bifurcations and Hopf bifurcations exist in that model. A detailed procedure was given in that paper for determining the bifurcation boundaries. The existence of an important class of codimension two bifurcations was also confirmed in that paper.

This paper is a continuation of Barnett and He (1999). In that paper, we investigated the properties of the UK model and found that it indeed had properties that well could characterize a “Keynesian world” for which active stabilization policy could reasonably be considered. In the current paper, we ask whether Keynesian policy, viewed as bifurcation selection to produce stability, can reasonably be viewed as practical and likely successful, when the world is hypothesized to be a Keynesian world devoid of such well known complications as Lucas critique or time inconsistency problems. We condition upon the UK continuous time macroeconometric
model not as a means to advocate or support that model but as a means of producing an experiment under circumstances most favorable to success of active stabilization policy.

In particular, to determine the potential usefulness of fiscal policy, we investigate the effect on bifurcation boundaries of augmenting the model with a fiscal policy feedback rule. We assume that the parameters of the other equations are not affected by the addition of the feedback fiscal policy rule, so that the source of the movement of the bifurcation boundaries is not the Lucas critique issue. The intent is to determine whether such rules can be expected to move the boundaries in such a manner as to include the point estimate of the parameters within the stable region. We investigate this matter both with a policy based upon heuristic economic reasoning and a policy derived from optimal control theory under the assumption of reputation equilibrium and intertemporal time consistency of the policy.

2 The UK Continuous Time Macroeconometric Model

Although the approach adopted in this paper is applicable to any continuous time macroeconometric model, we will restrict our discussion to the Bergstrom, Newman and Wymer continuous time macroeconometric model of the United Kingdom given in Bergstrom et al. (1992). That model is the best known and most extensively analyzed of the models in that class of models, which possess the relevant properties for this experiment in stabilization policy bifurcation selection. The model is described by the following 14 second-order differential equations.

\[
D^2 \log C = \gamma_1(\lambda_1 + \lambda_2 - D \log C) + \gamma_2 \log \left[ \frac{\beta_1 e^{-\beta_2 (r - D \log p) + \beta_3 D \log p}}{T_i C} (Q + P) \right] 
\]

\[
D^2 \log L = \gamma_3(\lambda_2 - D \log L) + \gamma_4 \log \left[ \frac{\beta_4 e^{-\lambda_4 t} (Q-\beta_5 K-\beta_6)^{-1/\beta_6}}{L} \right] 
\]

\[
D^2 \log K = \gamma_3(\lambda_1 + \lambda_2 - D \log K) + \gamma_6 \log \left[ \frac{\beta_5(Q/K)^{1+\beta_6}}{r - \beta_7 D \log p + \beta_8} \right] 
\]

\[
D^2 \log Q = \gamma_7(\lambda_1 + \lambda_2 - D \log Q) + \gamma_8 \log \left[ \frac{1 - \beta_9(qp/p_i)^{\beta_9}}{Q} \right] 
\]

\[
D^2 \log p = \gamma_9(D \log(w/p) - \lambda_1) + \gamma_{10} \log \left[ \frac{\beta_{11} T_2 e^{-\lambda_1 t} (1 - \beta_5(Q/K)^{\beta_6})^{-1+\beta_6}}{p} \right] 
\]

\[
D^2 \log w = \gamma_{11}(\lambda_1 - D \log(w/p)) + \gamma_{12} D \log(p_i/qp) + \gamma_{13} \log \left[ \frac{\beta_{14} e^{-\lambda_4 t} (Q-\beta_5 K-\beta_6)^{-1/\beta_6}}{\beta_{12} e^{\lambda_4 t}} \right] 
\]

\[
D^2 r = -\gamma_{14} Dr + \gamma_{15} \left[ \beta_{13} + r - \beta_{14} D \log q + \beta_{15} \frac{p(Q + P)}{M} - r \right] 
\]

\[
D^2 \log I = \gamma_{16}(\lambda_1 + \lambda_2 - D \log(p_i/qp)) 
\]
\[ + \gamma_{17} \log \left[ \frac{\beta_0 (qp/p_t)^{\beta_{10}} (C + G_c + DK + E_n + E_o)}{(p_t/qp)I} \right] \]  

\[ D^2 \log E_n = \gamma_{18} (\lambda_1 + \lambda_2 - D \log E_n) + \gamma_{19} \log \left[ \frac{\beta_{16} Y^2 \beta_{17} (p_f/qp)^{\beta_{18}}}{E_n} \right] \]  

\[ D^2 F = -\gamma_{20} DF + \gamma_{21} [\beta_{19} (Q + P) - F] \]  

\[ D^2 P = -\gamma_{22} DP + \gamma_{23} [(\beta_{20} + \beta_{21} (r_f - D \log p_f)) K_a - P] \]  

\[ D^2 K_a = -\gamma_{24} DK_a + \gamma_{25} [(\beta_{22} + \beta_{23} (r_f - r) - \beta_{24} D \log q - \beta_{25} d_e)(Q + P) - K_a] \]  

\[ D^2 \log M = \gamma_{26} (\lambda_3 - D \log M) + \gamma_{27} \log \left[ \frac{\beta_{26} e^{\lambda_4 t}}{M} \right] \]  

\[ + \gamma_{28} D \log \left[ \frac{E_n + E_o + P - F}{(p_t/qp)I} \right] + \gamma_{29} \log \left[ \frac{E_n + E_o + P - F - DK_a}{(p_t/qp)I} \right] \]  

\[ D^2 \log q = \gamma_{30} D \log (p_f/qp) + \gamma_{31} \log \left[ \frac{\beta_{31} p_f}{qp} \right] + \gamma_{32} D \log \left[ \frac{E_n + E_o + P - F}{(p_t/qp)I} \right] \]  

\[ + \gamma_{33} \log \left[ \frac{E_n + E_o + P - F - DK_a}{(p_t/qp)I} \right] \]  

where \( t \) is time, \( D \) is the derivative operator, \( D x = dx/dt \), \( D^2 x = d^2 x/dt^2 \), and \( C, E_n, F, I, K, K_a, L, M, P, Q, q, r, w \) are endogenous variables whose definitions are listed below.

- \( C \) real private consumption
- \( E_n \) real non-oil exports
- \( F \) real current transfers abroad
- \( I \) volume of imports
- \( K \) amount of fixed capital
- \( K_a \) cumulative net real investment abroad (excluding changes in official reserve)
- \( L \) employment
- \( M \) money supply
- \( P \) real profits, interest and dividends from abroad
- \( p \) price level
- \( Q \) real net output
- \( q \) exchange rate (price of sterling in foreign currency)
- \( r \) interest rate
- \( w \) wage rate

The variables \( d_x, E_o, G_c, p_f, p_t, r_f, T_1, T_2, Y_f \) are exogenous variables with the following definitions:

- \( d_x \) = dummy variable for exchange controls \((d_x = 1 \text{ for } 1974-79, d_x = 0 \text{ for } 1980 \text{ onwards})\)
- \( E_o \) = real oil exports
- \( G_c \) = real government consumption
- \( p_f \) = price level in leading foreign industrial countries
- \( p_t \) = price of imports (in foreign currency)
- \( r_f \) = foreign interest rate
$T_1$ = total taxation policy variable defined by Bergstrom et al. (1992, p. 317)
$T_2$ = indirect taxation policy variable defined by Bergstrom et al. (1992, p. 317)
$Y_f$ = real income of leading foreign industrial countries

The structural parameters $\beta_j, j = 1, 2, ..., 27$, $\gamma_j, j = 1, 2, ..., 33$, and $\lambda_k, k = 1, 2, 3$, can be estimated from historical data. A set of their estimates using quarterly data from 1974 to 1984 are given in Table 2 of Bergstrom et al. (1992). These equations are derived from economic theory. The exact interpretations of these 14 equations are available in Bergstrom et al. (1992).

Both endogenous and exogenous variables are time-varying quantities. The exogenous variables are assumed to satisfy the following conditions in equilibrium: $d_x = 0, E_o = 0, G_c = g^*(Q + P), p_f = p_f^* e^{\lambda_f t}, p_i = p_i^* e^{\lambda_i t}, r_f = r_f^*, T_1 = T_1^*, T_2 = T_2^*, Y_f = Y_f^* e^{\lambda_4 t}$, where $g^*, p_f^*, p_i^*, r_f^*, T_1^*, T_2^*, Y_f^*$ and $\lambda_4$ are constants. According to Bergstrom et al. (1992), the assumptions are reasonable. Under such assumptions, it has been proven that $C(t), ..., q(t)$ in (1)-(14) change at constant rates in equilibrium. Note that the system described by (1)-(14) is not autonomous, since time itself enters as an exogenous variable. To study the dynamics of the system around the equilibrium, we make a transformation by defining a set of new variables $y_1(t), y_2(t), ... , y_4(t)$:

\begin{align*}
y_1(t) &= \log\{C(t)/C^* e^{(\lambda_1+\Lambda_2)t}\} \\
y_2(t) &= \log\{L(t)/L^* e^{\lambda_2 t}\} \\
y_3(t) &= \log\{K(t)/K^* e^{(\lambda_1+\Lambda_2)t}\} \\
y_4(t) &= \log\{Q(t)/Q^* e^{(\lambda_1+\Lambda_2)t}\} \\
y_5(t) &= \log\{p(t)/p^* e^{(\lambda_3-\lambda_1-\Lambda_2)t}\} \\
y_6(t) &= \log\{w(t)/w^* e^{(\lambda_3-\lambda_1-\Lambda_2)t}\} \\
y_7(t) &= \tau(t) - r^* \\
y_8(t) &= \log\{I(t)/I^* e^{(\lambda_1+\Lambda_2)t}\} \\
y_9(t) &= \log\{E_n(t)/E_n^* e^{(\lambda_1+\Lambda_2)t}\} \\
y_{10}(t) &= \log\{F(t)/F^* e^{(\lambda_1+\Lambda_2)t}\} \\
y_{11}(t) &= \log\{P(t)/P^* e^{(\lambda_1+\Lambda_2)t}\} \\
y_{12}(t) &= \log\{K_a(t)/K_a^* e^{(\lambda_1+\Lambda_2)t}\} \\
y_{13}(t) &= \log\{M(t)/M^* e^{\lambda_2 t}\} \\
y_{14}(t) &= \log\{q(t)/q^* e^{(\lambda_1+\Lambda_2+\lambda_4-\Lambda_3)t}\}
\end{align*}

where $C^*, L^*, K^*, Q^*, P^*, w^*, r^*, I^*, E_n^*, F^*, P^*, K_a^*, M^*, q^*$ are functions of the vector $(\beta, \gamma, \lambda)$ of 63 parameters in equations (1)-(14) and the additional parameters $g^*, p_f^*, p_i^*, r_f^*, T_1^*, T_2^*, Y_f^*$, $\lambda_4$. The following is a set of differential equations derived from (1)-(14):

\begin{align*}
D^2 y_1 &= -\gamma_1 D y_1 + \gamma_2 \{\log(Q^* e^{\gamma_1 t} + P^* e^{\gamma_1 t}) - \log(Q^* + P^*) - \beta_2 y_1 + (\beta_2 - \beta_3) D y_5 - y_1\} \\
D^2 y_2 &= -\gamma_3 D y_2 + \gamma_4 \left\{ \frac{1}{\beta_6} \log \left[ \frac{(Q^*)^{-\beta_6} - \beta_5 (K^*)^{-\beta_6}}{(Q^*)^{-\beta_6} - \beta_5 (K^*)^{-\beta_6} e^{(\lambda_4 - \beta_6 t)}} - y_2 \right] \right\}
\end{align*}
\[ D^2 y_3 = -\gamma_5 D y_3 + \gamma_6 \left\{ (1 + \beta_6)(y_4 - y_3) + \log[r^* - \beta_7(\lambda_3 - \lambda_1 - \lambda_2) + \beta_8] \\
- \log[y_7 + r^* - \beta_7(D y_5 + \lambda_3 - \lambda_1 - \lambda_2) + \beta_8] \right\} \]

\[ D^2 y_4 = -\gamma_7 D y_4 + \gamma_8 \left\{ \log \left[ \frac{1 - \beta_3(g^* p^*/\mu^*)^{\beta_0} e^{\beta_0(y_5 + y_4)}}{1 - \beta_3(g^* p^*/\mu^*)^{\beta_0}} \right] \\
+ \log \left( C^* e^{y_4} + g^*(Q^* e^{y_4} + P^* e^{y_1}) + K^* e^{y_2}(D y_3 + \lambda_1 + \lambda_2) + E_n^* e^{y_4} \right) \\
- \log \left( C^* + g^*(Q^* + P^*) + K^*(\lambda_1 + \lambda_2) + E_n^* \right) - y_1 \right\} \]

\[ D^2 y_5 = \gamma_9(D y_6 - D y_5) + \gamma_{10} \left\{ y_6 - y_5 - \frac{1 + \beta_3}{\beta_6} \log \left[ 1 - \beta_5 \left( \frac{Q^*}{K^*} \right) e^{\beta_6(y_4 - y_3)} \right] \\
+ \frac{1 + \beta_3}{\beta_6} \log \left[ 1 - \beta_5 \left( \frac{Q^*}{K^*} \right) e^{\beta_6(y_4 - y_3)} \right] \right\} \]

\[ D^2 y_6 = \gamma_{11}(D y_5 - D y_6) - \gamma_{12}(D y_5 + D y_14) + \gamma_{13} \left\{ \frac{1}{\beta_6} \log[(Q^*)^{-\beta_6} - \beta_5(K^*)^{-\beta_6}] \\
- \frac{1}{\beta_6} \log[(Q^*)^{-\beta_6} - \beta_5(K^*)^{-\beta_6}] \right\} \]

\[ D^2 y_7 = -\gamma_{14} D y_7 + \gamma_{15} \left[ \frac{p^* e^{y_5}(Q^* e^{y_4} + P^* e^{y_1})}{M^* e^{y_13}} - \beta_{15} \frac{p^* (Q^* + P^*)}{M^*} - \beta_{14} D y_14 - y_7 \right] \]

\[ D^2 y_8 = \gamma_{16}(D y_5 + D y_14 - D y_8) + \gamma_{17} \left\{ (1 + \beta_{10})(y_5 + y_14) - y_8 \\
+ \log[C^* e^{y_4} + g^*(Q^* e^{y_4} + P^* e^{y_1}) + K^* e^{y_2}(D y_3 + \lambda_1 + \lambda_2) + E_n^* e^{y_4}] \\
- \log[C^* + g^*(Q^* + P^*) + K^*(\lambda_1 + \lambda_2) + E_n^*] \right\} \]

\[ D^2 y_9 = -\gamma_{18} D y_9 - \gamma_{19} \left\{ \beta_{18}(y_5 + y_14) + y_9 \right\} \]

\[ D^2 y_{10} = -\{\gamma_{20} + 2(\lambda_1 + \lambda_2)\} D y_{10} - (D y_{10})^2 + \gamma_{21} \beta_{19} \left\{ \frac{Q^* e^{y_4} + P^* e^{y_1}}{F^* e^{y_10}} - \frac{Q^* + P^*}{F^*} \right\} \]

\[ D^2 y_{11} = -\{\gamma_{22} + 2(\lambda_1 + \lambda_2)\} D y_{11} - (D y_{11})^2 \\
+ \gamma_{23} \left\{ \beta_{20} + \beta_{21}(r_f - \lambda_4) \right\} \left\{ \frac{K^* e^{y_12}}{P^* e^{y_11}} - \frac{K^*}{P^*} \right\} \]

\[ D^2 y_{12} = -\{\gamma_{24} + 2(\lambda_1 + \lambda_2)\} D y_{12} - (D y_{12})^2 + \gamma_{25} \left\{ \left[ \beta_{22} + \beta_{23}(r_f - r^* - y_t) \right. \\
- \beta_{24}(D y_{14} + \lambda_1 + \lambda_2 + \lambda_4 - \lambda_3) \frac{Q^* e^{y_4} + P^* e^{y_11}}{K^* e^{y_12}} - \left. \beta_{22} + \beta_{23}(r_f - r^*) \right. \\
- \beta_{24}(\lambda_1 + \lambda_2 + \lambda_4 - \lambda_3) \frac{Q^* + P^*}{K^*} \right\} \]

\[ D^2 y_{13} = -\gamma_{26} D y_{13} - \gamma_{27} y_{13} + \gamma_{28} \left\{ \frac{E_n^* e^{y_4} D y_5 + P^* e^{y_11} D y_{11} - F^* e^{y_10} D y_{10}}{E_n^* e^{y_9} + P^* e^{y_11} - F^* e^{y_10}} \right. \\
+ D y_5 + D y_{14} - D y_8 \right\} + \gamma_{29} \left\{ \log \left( E_n^* e^{y_9} + P^* e^{y_11} - F^* e^{y_10} - K^* e^{y_12} \right) \]

\[ + \gamma_{30} \left\{ \log \left( E_n^* e^{y_9} + P^* e^{y_11} - F^* e^{y_10} - K^* e^{y_12} \right) \right\} \]

\[ + \gamma_{31} \left\{ \log \left( E_n^* e^{y_9} + P^* e^{y_11} - F^* e^{y_10} - K^* e^{y_12} \right) \right\} \]

\[ + \gamma_{32} \left\{ \log \left( E_n^* e^{y_9} + P^* e^{y_11} - F^* e^{y_10} - K^* e^{y_12} \right) \right\} \]
\[ D^2 y_{14} = -\gamma_{30}(Dy_5 + Dy_{14}) - \gamma_{31}(y_5 + y_{14}) \\
+ \gamma_{32}\left\{ \frac{E_n^* e^{y_0} Dy_9 + P^* e^{y_1} Dy_{11} - F^* e^{y_0} Dy_{10}}{E_n^* e^{y_0} + P^* e^{y_1} - F^* e^{y_0}} \right\} + Dy_5 + Dy_{14} - Dy_8 \\
+ \gamma_{33}\left\{ \log[E_n^* e^{y_0} + P^* e^{y_1} - F^* e^{y_0} - K_a^* e^{y_2} (Dy_2 + \lambda_1 + \lambda_2)] \\
- \log[E_n^* + P^* - F^* - K_a^*(\lambda_1 + \lambda_2)] + y_5 + y_{14} - y_8 \right\} \] 

(28)

The equilibrium of the original system (1)-(14) corresponds to the equilibrium \( y_i = 0, i = 1, 2, ..., 14 \) of (15)-(28). The major advantage of the new system described by (15)-(28) is that it is autonomous, but still retains all the dynamic properties of the original system (1)-(14). Autonomous systems are the main subject of nonlinear systems theory. Generally speaking, it is difficult to analyze non-autonomous systems. In this paper, we will analyze the local dynamics of (15)-(28) in a local neighborhood of the equilibrium \( y_i = 0, i = 1, 2, ..., 14 \). For simplicity, the system (15)-(28) is denoted as

\[ Dx = f(x, \theta), \] 

(29)

where

\[ x = [y_1 \ Dy_1 \ y_2 \ Dy_2 \ ... \ y_{14} \ Dy_{14}]^T \in \mathbb{R}^{28} \]

is the state vector, while

\[ \theta = [\beta_1, ..., \beta_{27}, \gamma_1, ..., \gamma_{33}, \lambda_1, \lambda_2, \lambda_3]^T \in \mathbb{R}^{63} \]

is the parameter vector, and \( f(x, \theta) \) is a vector of functions of \( x \) and \( \theta \) obtained from (15)-(28). Every component of \( f(x, \theta) \) is smooth (infinitely differentiable) in a neighborhood of the origin. Note that (29) is a first-order system. The point \( x^* = 0 \) is an equilibrium of (29). Since \( \theta \) represents physical quantities, its entries are bounded by theoretical and a priori feasibility constraints [see, Table 2 of Bergstrom et al. (1992)]. Let \( \Theta \) denote the feasible region determined by those bounds. \( \Theta \) is a bounded region.

### 3 Stability of the Equilibrium

In this section, we examine the local stability of the system (29) around the equilibrium \( x^* = 0 \). For this purpose, write (29) as

\[ Dx = A(\theta)x + F(x, \theta), \] 

(30)

where

\[ A(\theta) = \frac{\partial f(x, \theta)}{\partial x} \bigg|_{x=x^*} \]

is the Jacobian of \( f(x, \theta) \) evaluated at the equilibrium \( x^* = 0 \), \( A(\theta) \in \mathbb{R}^{28 \times 28} \), and

\[ F(x, \theta) = f(x, \theta) - A(\theta)x = o(x) \]

is the terms of higher order. In nonlinear systems theory, the local stability of (29) can be studied by examining the eigenvalues of the coefficient matrix \( A(\theta) \). Briefly,
(a) If all eigenvalues of $A(\theta)$ have strictly negative real parts, then (29) is locally asymptotically stable in the neighborhood of $x^*$. 

(b) If at least one of the eigenvalues of $A(\theta)$ has positive real part, then (29) is locally asymptotically unstable in the neighborhood of $x^*$. 

(c) If all eigenvalues of $A(\theta)$ have nonpositive real parts and at least one has zero real part, the stability of (29) usually cannot be determined from the matrix $A(\theta)$. One needs to analyze higher order terms in order to determine the stability of the system. In most cases, one needs to examine the system behavior along a certain manifold to determine the stability [see, e.g., Khalil (1992)].

Since $A(\theta)$ is a function of $\theta$, stability of (29) could be dependent on $\theta$, which we shall verify is indeed true. For the set of estimated values of $\{\beta_1\}, \{\gamma_2\}, \{\lambda_k\}$ given in Table 2 of Bergstrom et al. (1992), all the eigenvalues of $A(\theta)$ are stable except three of them:

$$s_1 = 0.0033, s_2 = 0.0090 + 0.0453i, s_3 = 0.0090 - 0.0453i,$$

where $i = \sqrt{-1}$ is the imaginary unit. However, the real parts of these unstable eigenvalues are (relatively) so small that it is unclear that their signs are statistically significant. We are using the model for a policy experiment of the effects of bifurcation policy on an unstable Keynesian model. For that purpose, the finding that the point estimates of the parameters are in the unstable region is sufficient, regardless of whether or not the inference of instability is statistically significant. A formal hypothesis test of the null of stability would be very difficult with this model, but is unnecessary. Nevertheless, in the Appendix we have explored the implications for statistical significance of the information available from careful consideration of the existing published standard errors of the point estimates.

4 Locating the Stable Region Boundaries

To be able to determine how the stable region is affected by policy, we must be able to locate the bifurcation boundaries that surround the stable region. This section describes the procedures we use to locate and map those boundaries. We consider two feasible parameter regions: The first is $\Theta$ that was mentioned earlier. The second, denoted as $\Theta_1$, is the Cartesian product of confidence intervals of parameter estimates. The detailed form of $\Theta_1$ is described in the Appendix.

We find the stable region boundaries by first locating a parameter value $\theta^*$ at which the system is stable and then expanding the neighborhood of $\theta^*$ to the stable boundaries. The parameter value $\theta^*$ is found using a gradient method described in the Appendix. On one hand, we have seen in the previous section that $A(\theta)$ has three eigenvalues with strictly positive real parts for the set of parameter values given in Table 2 of Bergstrom et al. (1992). On the other hand, all eigenvalues of $A(\theta)$ have strictly negative real parts for $\theta = \theta^*$. Since eigenvalues are continuous functions of entries of $A(\theta)$, there must exist parameter values of $\theta$ such that the (29) becomes unstable from stable (or stable from unstable) when $\theta$ crosses such values. Those parameter values correspond to bifurcation points at which the dynamic solution properties of the system (29) change. Different types of bifurcations may arise according to the way unstable eigenvalues are created. In this section, we analyze the occurrence of transcritical bifurcations.
Another important class of bifurcations, the Hopf bifurcations, will be considered in the next section.

An equilibrium point $x^*$ of (29) is called hyperbolic if the coefficient matrix $A(\theta)$ has no eigenvalues with zero real parts. For a hyperbolic equilibrium $x^*$, the asymptotic behavior of (29) is determined by the eigenvalues of $A(\theta)$ according to (a)-(b) in the previous section.

For small perturbations of parameters, there are no structural changes in the stability of a hyperbolic equilibrium, provided that the perturbations are sufficiently small. Therefore, bifurcations occur at non-hyperbolic equilibria only.

4.1 Transcritical Bifurcations

A transcritical bifurcation occurs when a system has a non-hyperbolic equilibrium with a geometrically simple zero eigenvalue at the bifurcation point, and additional transversality conditions are satisfied [given by the Sotomayor's Theorem in Sotomayor (1973)].

For a one-dimension system,

$$Dx = G(x, \theta),$$

the transversality conditions for a transcritical bifurcation at $(x, \theta) = (0,0)$ are

$$G(0,0) = G_x(0,0) = 0, G_\theta(0,0) = 0, G_{xx}(0,0) \neq 0, \text{ and } G_{\theta x} - G_{xx}G_{\theta \theta}(0,0) > 0. \quad (31)$$

Transversality conditions for higher-order dimension systems are given in Sotomayor (1973). The canonical form of such systems is

$$Dx = \theta x - x^2.$$

The bifurcation diagram of a transcritical bifurcation is

![Figure 1. Transcritical bifurcation diagram.](image)

When $det(A(\theta)) = 0$, $A(\theta)$ has at least one zero eigenvalue. If $A(\theta)$ has exactly one simple zero eigenvalue under the transversality conditions in (31), this $\theta$ corresponds to a transcritical bifurcation. So the first condition we are going to use to find the bifurcation boundary is

$$det(A(\theta)) = 0. \quad (32)$$

Analytical forms of bifurcation boundaries can be obtained for most parameters. For example, if we are interested in bifurcations when two parameters $\theta_i, \theta_j$ change, while others are kept at $\theta^*$, the matrix $A(\theta)$ may be rewritten as
\[ A(\theta) = A(\theta^*) + B(\theta^*)D(\mu)C(\theta^*), \]  
where \( \mu = [\theta_i, \theta_j] \), and \( D(\mu) \) is a matrix of appropriate dimension. The dimension of \( D(\mu) \) is usually much smaller than that of \( A(\theta) \). In this case, the following proposition is helpful for simplifying the determination of transcritical bifurcation boundaries.

**Proposition 1.** Assume that \( A(\theta) \) has structure (33) and that all eigenvalues of \( A(\theta^*) \) have strictly negative real parts. Then \( \det(A(\theta)) = 0 \) if and only if
\[ \det(I + D(\mu)C(\theta^*)A^{-1}(\theta^*)B(\theta^*)) = 0. \]  

**Proof.** Consider the matrix
\[
\begin{pmatrix}
A(\theta^*) & -B(\theta^*) \\
D(\mu)C(\theta^*) & I
\end{pmatrix}.
\]

Then
\[
\begin{pmatrix}
A(\theta^*) & -B(\theta^*) \\
D(\mu)C(\theta^*) & I
\end{pmatrix}
\begin{pmatrix}
I & A^{-1}(\theta^*)B(\theta^*) \\
0 & I
\end{pmatrix} =
\begin{pmatrix}
A(\theta^*) & 0 \\
D(\mu)C(\theta^*) & I + D(\mu)C(\theta^*)A^{-1}(\theta^*)B(\theta^*)
\end{pmatrix}.
\]

Hence,
\[ \det\left( \begin{pmatrix}
A(\theta^*) & -B(\theta^*) \\
D(\mu)C(\theta^*) & I
\end{pmatrix} \right) = \det(A(\theta^*))\det(I + D(\mu)C(\theta^*)A^{-1}(\theta^*)B(\theta^*)). \]  

On the other hand,
\[
\begin{pmatrix}
I & B(\theta^*) \\
0 & I
\end{pmatrix}
\begin{pmatrix}
A(\theta^*) & -B(\theta^*) \\
D(\mu)C(\theta^*) & I
\end{pmatrix} =
\begin{pmatrix}
A(\theta^*) + B(\theta^*)D(\mu)C(\theta^*) & 0 \\
D(\mu)C(\theta^*) & I
\end{pmatrix},
\]

which implies that
\[ \det\left( \begin{pmatrix}
A(\theta^*) & -B(\theta^*) \\
D(\mu)C(\theta^*) & I
\end{pmatrix} \right) = \det(A(\theta^*) + B(\theta^*)D(\mu)C(\theta^*)) = \det(A(\theta)). \]  

The combination of (35) and (36) results in
\[ \det(A(\theta)) = \det(A(\theta^*))\det(I + D(\mu)C(\theta^*)A^{-1}(\theta^*)B(\theta^*)). \]

Since all eigenvalues of \( A(\theta^*) \) have strictly negative real parts, \( \det(A(\theta^*)) \neq 0 \). Therefore, the preceding equation implies that \( \det(A(\theta)) = 0 \) if and only if (34) holds. \( \square \)

Proposition 1 is useful for simplifying the calculation of \( \det(A(\theta)) \). To demonstrate the usefulness of this approach, consider finding the bifurcation boundary for \( \mu = [\theta_2, \theta_{23}] = [\beta_2, \beta_{23}] \).

Only the following entries of \( A(\theta) \) are functions of \( \mu \).
\[
\begin{align*}
A_{2,10}(\mu) &= \gamma_2(\beta_2 - \beta_3), \\
A_{2,13}(\mu) &= -\gamma_2\beta_2, \\
A_{24,7}(\mu) &= \gamma_{25}Q^*/K^*_a, \\
A_{24,13}(\mu) &= -\gamma_{25}\beta_{23}(Q^* + P^*)/K^*_a, \\
A_{24,21}(\mu) &= \gamma_{25}(P^*/K^*_a, \\
A_{24,23}(\mu) &= -\gamma_{25}(Q^* + P^*)/K^*_a,
\end{align*}
\]

where \( \delta = \beta_{22} + \beta_{23}(r_f - r^*) - \beta_{21}(\lambda_1 + \lambda_2 + \lambda_4 - \lambda_3) \). In this case, \( B(\theta^*) \in \mathbb{R}^{28\times 2} \) has all zero entries except that its (2,1) entry is 1 and its (24,2) entry is 1. Also \( C(\theta^*) \in \mathbb{R}^{5\times 28} \) has zero entries, except the entries are 1 at the following locations: (1,7), (2,10), (3,13), (4,21), (5,23); and \( D(\mu) \) is
\[ D(\mu) = d(\mu) - d(\theta^*), \]

where
\[ d(\mu) = \begin{bmatrix} 0 & A_{2,10}(\mu) & A_{2,13}(\mu) & 0 & 0 \\ A_{24,7}(\mu) & 0 & A_{24,13}(\mu) & A_{24,21}(\mu) & A_{24,23}(\mu) \end{bmatrix}. \]

Direct calculation yields
\[
C(\theta^*)A^{-1}(\theta^*)B(\theta^*) = \begin{bmatrix} 13.7090 & -17.1187 \\ 0 & 0 \\ -1.7276 & 2.1573 \\ -616.4935 & 389.2039 \\ -616.4935 & 389.2039 \end{bmatrix}.
\]

Using Proposition 1, we know that \(det(A) = 0\) is equivalent to
\[
det\left[ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + D(\mu) \begin{bmatrix} 13.7090 & -17.1187 \\ 0 & 0 \\ -1.7276 & 2.1573 \\ -616.4935 & 389.2039 \\ -616.4935 & 389.2039 \end{bmatrix} \right] = 0,
\]
or equivalently,
\[-14.23 + 15.91\theta_2 + 0.28\theta_{23} - 0.50\theta_2\theta_{23} = 0.\]

The following diagram depicts the bifurcation boundary when \(\mu\) varies inside \(\Theta_1\).

![Diagram](image)

**Figure 2.** Candidate of transcritical bifurcation boundary for \(\beta_2, \beta_{23}\) within \(\Theta_1\).

Stability of the system (29) when parameters take values on the bifurcation boundary needs to be determined by examining the higher order terms in (30). This is usually done with the help of center manifold theory. After appropriate coordinate transformation, it is possible to write (30) as [see, for example, Glendinning (1994), Guckenheimer and Holmes (1983)]:

\[
\begin{align*}
Dx_1 &= A_1(\theta)x_1 + F_1(x_1, x_2, \theta) \\
Dx_2 &= A_2(\theta)x_2 + F_2(x_1, x_2, \theta)
\end{align*}
\]

(37)

(38)

where all eigenvalues of \(A_1(\theta)\) have zero real parts and all eigenvalues of \(A_2(\theta)\) have strictly negative real parts. Center manifold theory says that there exists a center manifold \(x_2 = h(x_1)\) such that
\[ h(0) = 0 \text{ and } Dh(0) = 0.\]

Substituting \(x_2 = h(x_1)\) into (37), we obtain
\[ Dx_1 = A_1(\theta)x_1 + F_1(x_1, h(x_1), \theta). \]  

(39)

The stability of (29) is connected to that of (39) through the following theorem.

**Theorem 1** [Henry (1981), Carr (1981)] If the origin of (39) is locally asymptotically stable (respectively unstable), then the origin of (29) is also locally asymptotically stable (respectively unstable).

Substituting \( x_2 = h(x_1) \) into (38), we have

\[ Dx_2 = Dh(x_1)Dx_1 = Dh(x_1)[A_1(\theta)x_1 + F_1(x_1, h(x_1), \theta)] = A_2(\theta)h(x_1) + F_2(x_1, h(x_1), \theta), \]

or \( h(x_1) \) satisfies

\[ Dh(x_1)[A_1(\theta)x_1 + F_1(x_1, h(x_1), \theta)] = A_2(\theta)h(x_1) + F_2(x_1, h(x_1), \theta), \]

(40)

\[ h(0) = 0, Dh(0) = 0. \]

(41)

The equations (40) and (41) can be used to solve or approximate, at least in principle, \( h(x_1) \). In practice, solving (40) and (41) would be difficult. One usually uses a Taylor series approximation of \( h(x_1) \) with several terms to determine the local asymptotic stability (instability) of (39). For most cases, especially codimension one bifurcations, the dimension of (39) is usually one or two. In the case of transcritical bifurcations, the dimension of (39) is one. In this case, let

\[ F_1(x_1, x_2, \theta) = a_1 \frac{x_1^2}{2!} + x_1a_2x_2 + a_3 \frac{x_1^3}{3!} + \ldots \]

\[ F_2(x_1, x_2, \theta) = b_1 \frac{x_1^2}{2!} + x_1b_2x_2 + b_3 \frac{x_1^3}{3!} + \ldots \]

Assume that \( h(x_1) \) has the following Taylor expansion

\[ h(x_1) = \alpha \frac{x_1^2}{2!} + \beta \frac{x_1^3}{3!} + \ldots \]

Then (40) becomes

\[ (\alpha x_1 + \beta \frac{x_1^2}{2!} + \ldots)[A_1(\theta)x_1 + a_1 \frac{x_1^2}{2!} + x_1a_2(\alpha \frac{x_1^2}{2!} + \beta \frac{x_1^3}{3!} + \ldots) + a_3 \frac{x_1^3}{3!} + \ldots] \]

\[ = A_2(\theta)(\alpha \frac{x_1^2}{2!} + \beta \frac{x_1^3}{3!} + \ldots) + b_1 \frac{x_1^2}{2!} + x_1b_2(\alpha \frac{x_1^2}{2!} + \beta \frac{x_1^3}{3!} + \ldots) + b_3 \frac{x_1^3}{3!} + \ldots \]

By comparing coefficients of the same order terms and also observing that \( A_1(\theta) = 0 \) at a bifurcation point, we know that

\[ \alpha = -A_1^{-1}(\theta)b_1, \quad \beta = A_2^{-1}(\theta)(\alpha a_1 - b_2\alpha). \]

Therefore, (39) becomes

\[ Dx_1 = A_1(\theta)x_1 + a_1 \frac{x_1^2}{2!} + (\frac{a_2\alpha}{2!} + \frac{a_3\beta}{3!})x_1^3 + \ldots \]

(42)

The stability analysis of (42) determines the stability properties of (30).

As an example, consider the stability of (30) on the transcritical bifurcation boundary for parameters \( \beta_2, \beta_3 \). On the bifurcation boundary shown in Figure 2, the stability of the system (29) could be determined using the previously described approach. For example, consider the point \( (\beta_2, \beta_3) = (0.1068, 55.9866) \) on the boundary. We found that (39) becomes

\[ Dx_1 = 0.1308x_1^2 + o(x_1^2), \]

which is locally asymptotically unstable at \( x_1 = 0 \). Therefore, we know from center manifold theory that the system (29) is locally asymptotically unstable at this transcritical bifurcation point.
5 Hopf Bifurcations

In this section, we examine the existence of Hopf bifurcations in the system (29). Hopf bifurcations occur at points at which the system has a non-hyperbolic equilibrium with a pair of purely imaginary eigenvalues, but without zero eigenvalues. Also additional transversality conditions must be satisfied [Hopf Theorem in Guckenheimer and Holmes (1983)].

The dimension of a system needs to be at least two in order for a Hopf bifurcation to occur. The transversality conditions, which are rather lengthy, are given in Glendinning (1994). The canonical form of such systems is

\[ Dx = -y + x(\theta - (x^2 + y^2)), \]
\[ Dy = x + y(\theta - (x^2 + y^2)), \]

The bifurcation diagram of a Hopf bifurcation is

![Hopf bifurcation diagram](image)

We next determine the boundaries of Hopf bifurcations. Consider the case of \( \text{det}(A(\theta)) \neq 0 \), but \( A(\theta) \) has at least one pair of pure imaginary eigenvalues (with zero real parts and non-zero imaginary parts.) If \( A(\theta) \) has exactly one such pair, and some additional transversality conditions hold, this point is on a Hopf bifurcation boundary.

To find Hopf bifurcation points, let \( p(s) = \text{det}(sI - A) \) be the characteristic polynomial of \( A \) and express it as

\[ p(s) = c_0 + c_1s + c_2s^2 + c_3s^3 + \cdots + c_{n-1}s^{n-1} + s^n, \]

where \( n = 28 \) for the system (29). Construct the following \((n-1)\) by \((n-1)\) matrix

\[
S = \begin{bmatrix}
  c_0 & c_2 & \cdots & c_{n-2} & 1 & 0 & 0 & \cdots & 0 \\
  0 & c_0 & c_2 & \cdots & c_{n-2} & 1 & 0 & \cdots & 0 \\
  \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
  0 & 0 & \cdots & 0 & c_0 & c_2 & \cdots & \cdots & 1 \\
  c_1 & c_3 & \cdots & c_{n-1} & 0 & 0 & \cdots & \cdots & 0 \\
  0 & c_1 & c_3 & \cdots & c_{n-1} & 0 & 0 & \cdots & 0 \\
  \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
  0 & 0 & \cdots & 0 & c_1 & c_3 & \cdots & c_{n-1}
\end{bmatrix}
\]

\[
\begin{aligned}
\text{\(\frac{n-2}{2}\) rows} \\
\text{\(\frac{n}{2}\) rows}
\end{aligned}
\]
Let $S_0$ be obtained by deleting rows 1 and $n/2$ and columns 1 and 2, and let $S_1$ be obtained by deleting rows 1 and $n/2$ and columns 1 and 3. Then the matrix $A$ has exactly one pair of purely imaginary eigenvalues if [see, e.g., Guckenheimer et al. (1997)]

$$det(S) = 0, \quad det(S_0)det(S_1) > 0.$$  

If $det(S) \neq 0$ or if $det(S_0)det(S_1) < 0$, then $A$ has no purely imaginary eigenvalues. If $det(S) = 0$ and $det(S_0)det(S_1) = 0$, then $A$ may have more than one pair of purely imaginary eigenvalues. Therefore, the second condition for a bifurcation boundary is

$$det(S) = 0, \quad det(S_0)det(S_1) \geq 0. \quad (43)$$

We will use (43) to find candidates for bifurcation boundaries and then check which segments are true boundaries. Since solving (43) analytically is impossible for most problems, a numerical procedure was provided in Barnett and He (1999) to find bifurcation boundaries. The stability of (29) at parameter values on the bifurcation boundary can be analyzed in the same manner as for transcritical bifurcations.

### 5.1 Numerical Examples

**Example 1.** Figure 4 (a) and (b) show bifurcation boundaries for $\mu = [\theta_2, \theta_{62}]$. Figure 4 (a) illustrates bifurcation boundaries when $\mu$ varies within $\Theta_1$, which is the Cartesian product of the 95% confidence intervals of the estimates, while Figure 4 (b) describes bifurcations within $\Theta$. All other parameters are kept at $\theta^*$. In both (a) and (b), the dashed lines are determined by (32) and the solid lines are calculated according to (43). The shaded area is the parameter region for which the system (29) is stable. Therefore, the dashed lines along the shaded regions are the transcritical bifurcation boundaries and the solid lines along the shaded regions represent the Hopf bifurcation boundaries.

Of special interest is the intersection point of the transcritical bifurcation boundary and the Hopf bifurcation boundary. This point corresponds to a codimension two bifurcation. The properties of (29) near this point deserve further investigation.

![Figure 4. Bifurcation boundaries for $\theta_2, \theta_{62}$.](image)
Example 2. If we add another parameter, \( \theta_{23} \), to our consideration, a bifurcation surface in 3-dimensional space could be obtained. Figure 5 shows the bifurcation boundaries for \( \mu = [\theta_2, \theta_{23}, \theta_{62}] \). Both transcritical and Hopf bifurcation boundaries are shown.

Figure 5. Bifurcation boundaries for \( \theta_2, \theta_{23}, \theta_{62} \).

Example 3. Figure 6 shows bifurcation boundaries for \( \theta_{23}, \theta_{62} \).

Figure 6. Bifurcation boundaries for \( \theta_{23}, \theta_{62} \).
Example 4. Figure 7 shows bifurcation boundaries for $\theta_{12}, \theta_{23}, \theta_{62}$.

(a) bifurcation within $\Theta_1$  
(b) bifurcation within $\Theta$

Figure 7. Bifurcation boundaries for $\theta_{12}, \theta_{23}, \theta_{62}$.

6 Stabilization Policy

We have seen in the previous section that both transcritical and Hopf bifurcations exist in the continuous time macroeconometric model. In this section, we shall investigate the control of bifurcations using fiscal feedback laws. We define stabilization policy to be intentional movement of bifurcation regions through policy intervention, with the intent of moving the stable region to include the parameters. If the parameters were inside the stable region without policy, then there would be no need for stabilization policy.

We first consider the effect of a heuristically plausible fiscal policy of the following form as suggested in Bergstrom et al. (1994):

$$D \log T_1 = \gamma \left[ \beta \log \left\{ \frac{Q}{Q e^{(A_1 + A_2)t}} \right\} - \log \left\{ \frac{T_1}{T_1^*} \right\} \right].$$  
(44)

The control feedback rule (44) adjusts the fiscal policy instrument, $T_1$, towards a partial equilibrium level, which is an increasing function of the ratio of output to its steady state level. In (44), $\beta$ is a measure of the strength of the feedback, and $\gamma$ governs the speed of adjustment. By choosing appropriate parameters $\beta$, $\gamma$, it was found in Bergstrom et al. (1994) that the control law (44) can reduce the positive real parts of unstable eigenvalues, implying that the policy might be stabilizing. Since Bergstrom is perhaps the foremost authority on the UK continuous time model and on such continuous time macroeconometric models in general, we would expect that if any heuristically plausible fiscal policy would be successful, it would be Bergstrom’s. However, we find that the control law (44) is unlikely to stabilize the systems (1)-(14).

Define

$$y_{15} = \log \left\{ \frac{T_1}{T_1^*} \right\}.$$

Then it is easy to verify that $y_{15}$ satisfies

$$D y_{15} = \gamma/\beta y_4 - \gamma y_{15}.$$
Adding this equation to the system (29), we obtain
\[ Dw = A'(\theta)w + F'(x, \theta) \]
where
\[ w = \begin{bmatrix} x \\ y_{15} \end{bmatrix}, \quad F'(x, \theta) = \begin{bmatrix} F(x, \theta) \\ 0 \end{bmatrix} \]
and \( A'(\theta) \) is the corresponding coefficient matrix. Figure 8 shows the effect of the simple fiscal policy on the bifurcation boundaries for \( \beta_2 \) and \( \beta_5 \). Three sets of parameter values of \( \beta, \gamma \) are considered. The case \( \beta = 0, \gamma = 0 \) corresponds to the original system (1)-(14), in which no fiscal policy control is applied.

![Figure 8. Effect of a simple fiscal policy.](image)

Figure 8 clearly indicates that some stable regions could be destabilized and some unstable regions could be stabilized. Since the feasible stable region is smaller under control than without control, the policy is not likely to succeed.

Next we consider a more sophisticated fiscal control policy, based upon optimum control theory. Let the control be
\[ u = \log \left\{ \frac{T_1}{T^*_1} \right\}. \]
Under the control (46), the system (29) becomes
\[ Dx = A(\theta)x + Bu + F(x, \theta) \]
where \( B = [0 \quad -\gamma_2 \quad 0 \ldots 0]^T \in R^{28} \). Direct verification yields that the controllability matrix \( [B \ AB \ldots A^{27}B] \) has rank 7, implying that the pair \( (A, B) \) is not controllable. Therefore, it is not possible to set the closed-loop eigenvalues of the coefficient matrix of (47) arbitrarily. However, a numerical analysis shows that there exists a linear transformation \( z = T x \) such that
\[ Dz = \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix} z + \begin{bmatrix} 0 \\ B_2 \end{bmatrix} u, \]
where \( A_{11} \in R^{21 \times 21}, A_{21} \in R^{7 \times 21}, A_{22} \in R^{7 \times 7}, B_2 = [0 \ldots 0 1] \in R^7 \),
\[ TA(\theta)T^{-1} = \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix}, \quad TB = \begin{bmatrix} 0 \\ B_2 \end{bmatrix}, \]

20
and \((A_{22}, B_2)\) is controllable. The exact numerical procedure for this decomposition can be found, for example, in Khalil (1992). Further, all eigenvalues of \(A_{11}\) have negative real parts, implying that \((A(\theta), B)\) is stabilizable.

To obtain a feedback control law stabilizing (47), we consider solving the problem of minimizing

\[
J = \int_0^\infty [x^T U x + V u^2] dt,
\]

where \(U \in R^{28 \times 28}\) and \(V \in R^1\) are positive definite. It is known from linear system theory that the optimal feedback control law is given by

\[
u = K x, \quad K = -V^{-1} B^T P\]

where \(P\) is positive definite and solves the algebraic Ricatti equation

\[
PA + A^T P - PBV^{-1} B^T P + U = 0.
\]

Choose \(U = I\) and \(V = 1\). Then we get

\[
K = [1.5036, 0.4754, 0.0178, 0.0307, -1.1897, 18.5851, 7.2979, 1.9036, 2.3147, \\
23.2392, 0.7488, 7.2091, 38.9065, 39.4000, 0.1841, 0.2129, 0.3061, 0.0494, -0.0027, \\
0.0000, -0.0013, -0.0002, 0.9550, 1.8482, -0.3329, -0.5475, 0.9369, -1.0402].
\] (48)

Under the control \(\nu = K x\), the equation (47) becomes

\[
\dot{x} = [A(\theta) + BK] x + F(x, \theta).
\] (49)

The choice of \(K\) ensures that all the eigenvalues of \(A + BK\) have strictly negative real parts. Therefore, the state feedback law \(\nu = K x\) indeed stabilizes the system (49). Direct verification confirms that there exist no bifurcations under the control law (49) for \((\beta_2, \beta_3)\).

We further check the stability of (49) under the control law (49) for all parameter \(\theta \in \Theta\). Our purpose is to see if there is a parameter \(\theta^* \in \Theta\) at which the system (49) is unstable. Such a parameter can be found by replacing (50) with the maximum real parts of eigenvalues of matrix \(A(\theta')\). The following \(\theta^* \in \Theta_1\) has been found

\[
\theta^* = [0.9400, 0.5074, 2.0913, 0.2030, 0.2612, 0.1933, 0.2309, 0.0000, 0.2510, -0.3423, 1.0000, \\
23.5000, -0.0100, 0.2086, 0.0332, 13.5460, 0.4562, 0.9322, 0.0100, 0.0034, 0.1324, -0.5006, \\
100.0000, 0.0000, 0.0000, 71.4241, 0.8213, 4.0000, 1.0289, 0.3631, 0.1201, 0.1000, 0.0010, \\
3.7015, 0.4860, 1.1270, 0.0042, 3.3994, 0.4802, 0.1300, 0.6851, 0.0620, 1.2134, 0.3830, \\
4.0000, 3.2535, 3.8592, 4.0000, 4.0000, 3.5723, 0.4775, 0.0010, 0.6104, 0.0183, 0.1718, \\
0.1227, 2.5551, 0.1833, 0.0035, 0.0000, 0.0018, 0.0004, 0.0100]\.
\]

The corresponding \(R_{\max}(A(\theta')) = 0.4971\). Therefore, there indeed exists a parameter \(\theta^* \in \Theta_1\) at which (49) is unstable.

Because of the Lucas critique, the problems associated with using structural models for policy simulations are well known. In addition, the possibility of time inconsistency of optimal control policy conditionally upon a structural model is well known. While the use of Euler equation models having deep parameters is to be preferred for policy simulations, we are not yet able to investigate bifurcation with a sufficiently rich Euler equation model. Nevertheless, it is interesting to ask whether the use of control feedback policy with a structural model would be easily implemented, if the Lucas critique and time inconsistency issues did not exist. It
seems often to be assumed that such active policy easily could be designed, if it were not for the problems produced by the Lucas critique and by the time inconsistency of optimal control.

But our results above indicate that even without those problems, the design of a successful feedback policy can be difficult. Even when the structural parameters of the other equations remain constant, adjoining a policy feedback rule to a system causes bifurcation boundaries to shift. The policy is successful, if those shifts cause the stable region to move towards the actual values of the parameters sufficiently to include the parameters within the stable region. We find that with the UK continuous time model, the selection of a fiscal policy feedback rule from particularly "well educated" heuristic economic reasoning is counterproductive. While the use of optimal control theory is successful conditionally upon the model, the resulting policy equation is too complicated to be of practical use and is heavily dependent upon the model. Furthermore, the negative results from the heuristic nonoptimal policy raise serious questions about the robustness of the optimal control conclusion to specification error. In addition, the success of the optimal control policy abstracts from the problems of possible time inconsistency of optimal control policy.

In short, the effects of policy feedback rules depend upon the complicated geometry of bifurcation boundaries and how they are moved by augmentation of the model by the feedback rule. It is not at all unlikely that such policies, when applied in the real world, could prove to be counterproductive, even if the Lucas critique and time inconsistency were not problems.

7 Conclusions

In this paper, we explore the policy relevance of bifurcation phenomena in continuous time macroeconometric models, using the Bergstrom, Nowman, and Wymer continuous time second order differential equations macroeconometric model of the United Kingdom. We have obtained a new formula for determining bifurcation boundary candidates for transcritical bifurcations, and we find that the dynamics of the model are locally asymptotically unstable on those bifurcation boundaries.

The point estimates of the parameters of the model are in the unstable region, and we find little statistical evidence from the published standard errors to question the inference of instability of the model, when no policy rule equations has been adjoined to the model. The problems associated with conducting a rigorous hypothesis test of the null hypothesis of stability in this model are prohibitively difficult, but of only distant importance to the current study. It is not our objective to determine whether or not the UK economy really is unstable, or whether or not the UK continuous time model is an accurate representation of the actual UK economy. Our objective is to explore policy in a model that plausibly represents a Keynesian continuous time model with frictions and with point estimates in the unstable region. We believe that our empirical results are adequate to establish that the UK continuous time model can serve that purpose. Hence we condition on that model with its parameters set at their point estimates during our policy experiment.

In contrast, the Grandmont (1985) model, which has been explored for similar reasons, has restrictive elasticities producing far less relevancy to policy experiments. In addition, that model has no frictions or other forms of market failure that would permit Pareto improving
policy. In the UK model, Keynesian frictions operate through adjustment lags. In principle, if policy could stabilize the model's unstable solution paths, it is possible that a friction-free stable steady state could be attained, in which partial adjustment lags would no longer exist. For these reasons, the UK continuous time model removes the sources of prior criticism of Grandmont's (1985) policy relevance.

We investigate the effects of fiscal policy on stabilization, and we find that conducting a successful active countercyclical policy may be more difficult than previously believed, as a result of the manner in which the bifurcation boundaries are affected by policy and the complex geometry of those boundaries. In particular, we find that active feedback fiscal policy rules based upon plausible economic reasoning can be counterproductive. Potentially successful stabilization rules are too complicated to be practical and are not likely to be robust to specification error. In short, we conclude that identifying a Keynesian "stabilization policy" that would be successful in a Keynesian world can be far more challenging than previously thought. This conclusion is consistent with common views on the difficulties of bifurcation selection in the sophisticated area of mathematical dynamics that deals with bifurcation phenomena.

An obvious priority for further advances in this area would be application of these methods to a stochastic dynamic general equilibrium model that could be viewed as an empirically plausible and policy relevant direct extension of the model investigated by Grandmont (1985). But the use of these methods with a realistic system of Euler equations poses significant challenges that are likely to motivate our future research in this area. One possibility, as a next step in the direction, would be to apply the methods in this paper to the models in Leeper and Sims (1994) and Schmitt-Grohe (1997), while progress in a related direction could be acquired by applying these methods to the model in Powell and Murphy (1997).

Appendix: Statistical Significance of Instability without Policy

For each \( \theta_i, i = 1, 2, ..., 63 \), its estimate and the corresponding standard deviation are provided in Table 2 of Bergstrom et al. (1992). For a given confidence level \( p \), a confidence interval can be obtained for any \( \theta_i \):

\[
[\hat{\theta}_i - \varepsilon_p \sigma_i, \quad \hat{\theta}_i + \varepsilon_p \sigma_i]
\]

where \( \hat{\theta}_i \) and \( \sigma_i \) are respectively the estimate and standard deviation for parameter \( \theta_i \), and \( \varepsilon_p \) is the standard normal percentile, as is consistent with the distributional assumptions in Bergstrom et al. (1992). Both \( \hat{\theta}_i \) and \( \sigma_i \) are available in Table 2 of Bergstrom et al. (1992). For example, the 95% confidence interval for \( \theta_1 = \beta_1 \) is \([0.9324, 0.9476]\). Let \( [\underline{\theta}_i, \bar{\theta}_i] \) denote the confidence interval for parameter \( \theta_i, i = 1, 2, ..., 63 \). For several parameters, the estimates were on the boundaries of the theoretical feasible intervals. In this case, we assume \( \sigma_i = 0 \) and the confidence interval becomes one point, the estimate. There are 8 such parameters: \( \theta_8, \theta_{11}, \theta_{13}, \theta_{28}, \theta_{33}, \theta_{48}, \theta_{60}, \theta_{63} \). Hence our inferences condition upon their corner solution values. Define

\[
\Theta_1 = \{ \theta \in \Theta \mid \theta_i \in [\underline{\theta}_i, \bar{\theta}_i], i = 1, 2, ..., 63 \}.
\]

Then \( \Theta_1, \Theta \subset \Theta \), denotes the region of \( \theta \) determined by the Cartesian product of those confidence intervals. Any change in the stability of (29) over \( \Theta_1 \) implies that we cannot reject
the hypothesis that the parameters are on the other side of the bifurcation boundary from the
side on which their points estimates lie.

Consider the following problem of minimizing the maximum real parts of eigenvalues of
matrix $A(\theta)$:

$$
\min_{\theta \in \Theta} R_{\max}(A(\theta))
$$

(50)

where

$$
R_{\max}(A(\theta)) = \max_i \{ \text{real}(\lambda_i) : \lambda_1, \lambda_2, ..., \lambda_{28} \text{ are eigenvalues of } A(\theta) \}.
$$

Since the dimension of $A(\theta)$ is $28 \times 28$, which is relatively high, we cannot acquire a closed-form expression for $R_{\max}(A(\theta))$. We use the gradient method to solve the minimization problem (50). More precisely, let $\theta^{(0)}$ be the estimated set of parameter values given in Table 2 of Bergstrom et al. (1992). At step $n$, $n \geq 0$, with $\theta^{(n)}$, let

$$
\theta^{(n+1)} = \pi_{\Theta_1}[\theta^{(n)} - a_n \frac{\partial R_{\max}(A(\theta))}{\partial \theta}]|_{\theta = \theta^{(n)}},
$$

where $\{a_n, n = 0, 1, 2, ..., \}$ is a sequence of (positive) step sizes and $\pi_{\Theta_1}[\theta]$ is the projection onto $\Theta_1$. The algorithm found the following point, $\theta^* \in \Theta_1$,

$$
\theta^* = [0.9400, 0.2936, 2.6871, 0.2030, 0.2562, 0.1961, 0.1345, 0.0000, 0.2440, -0.2577, 1.0000,
23.5000, -0.0100, 0.0473, 0.0288, 13.5460, 0.0100, 0.0061, 0.2763, 0.2948, 0.4562, 1.0678,
44.8543, 0.1173, 0.0004, 71.4241, 0.8213, 4.0000, 1.0289, 0.6698, 0.0697, 0.1311, 0.0010,
3.7078, 0.4860, 1.0537, 0.0042, 3.4562, 0.4858, 0.1300, 1.0044, 0.0379, 1.3839, 0.3777,
3.9947, 3.6534, 3.9995, 4.0000, 4.0000, 3.9400, 0.4775, 0.0071, 0.6114, 0.0574, 0.1718,
0.1227, 2.2845, 0.1489, 0.0035, 0.0000, 0.0042, 0.0036, 0.0100].
$$

The corresponding $R_{\max}(A(\theta^*)) = -0.0017$, implying that all eigenvalues of $A(\theta^*)$ have strictly negative real parts and the system (29) is locally asymptotically stable around $x^* = 0$ for $\theta^*$. This suggests that we cannot reject the hypothesis of stability.

One interesting fact is that if we reduce the confidence level to 90%, which results in smaller confidence intervals, the algorithm failed to find a value of $\theta$ under which the system (29) is stable. This seems to suggest that, with 90% confidence level, the system (29) is unstable for all parameter $\theta \in \Theta_1$, and we cannot accept the hypothesis of stability.

References


