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ABSTRACT 

We explore bifurcation phenomena in the open-economy New Keynesian model developed by Clarida, Gali and 

Gertler (2002). We find that the open economy framework can bring about more complex dynamics, along with a 

wider variety of qualitative behaviors and policy responses. Introducing parameters related to the open economy 

structure affects the values of bifurcation parameters and changes the location of bifurcation boundaries. As a result, 

the stratification of the confidence region, as previously seen in closed-economy New Keynesian models, remains an 

important research and policy risk to be considered in the context of the open-economy New Keynesian functional 

structures. In fact, econometrics and optimal policy design become more complex within an open economy. 

Dynamical inferences need to be qualified by the risk of bifurcation boundaries crossing the confidence regions.  

Without adequate prior econometric research, policy design needs to take into consideration that a change in 

monetary policy can produce an unanticipated bifurcation.  
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1. Introduction 

Dynamical economic systems are subject to bifurcations. As Grandmont (1985) has shown, even 

simple dynamic economic systems may exhibit various types of dynamic behaviors within the 

same functional structure, with the parameter space stratified into bifurcation regions associated 

with different dynamical solution-path behaviors. Therefore, analyzing bifurcation boundaries is 

relevant to understanding the dynamic properties of an economic system. Barnett and He (1999) 

investigated the stability of the Bergstrom, Nowman, and Wymer (1992) continuous time 

macroeconometric model of the UK economy and found both transcritical and Hopf bifurcations. 

Barnett and He (2006) more recently detected a singularity bifurcation in the Leeper and Sims’ 

(1994) Euler equations macroeconometric model of the U.S. economy. Barnett, Banerjee, 

Duzhak, and Gopalan (2011) found that including industrial organization features into a 

Zellner’s Marshallian macroeconomic model, permitting entry and exit of firms, does not 

decrease the relevancy of bifurcation phenomena. Barnett and Duzhak (2008, 2010) analyzed 

bifurcation using a closed economy New Keynesian model, based on Walsh (2003), and found 

both Hopf and period doubling bifurcations within the parameter space.  

 Occurrence of bifurcation boundaries stratifies the parameter space. As observed by 

Barnett and He (1999, 2002, 2006) and Barnett and Duzhak (2008, 2010), the existence of 

bifurcation boundaries in the parameter space indicates the presence of different solution types 

corresponding to parameter values close to each other, but on different sides of the bifurcation 

boundary. Dynamic properties of the system can change dramatically on different sides of a 

bifurcation boundary. As a result, robustness of inferences about dynamical solution properties 

can be damaged, if parameter values are close enough to a bifurcation boundary so that the 

parameters’ confidence regions cross the boundary. 

In Barnett and Eryilmaz (2012), we previously analyzed the Gali and Monacelli (2005) 

model, which is an open economy New Keynesian Model, and found that introducing parameters 

related to the open economy structure affects the values of bifurcation parameters and changes 

the location of bifurcation boundaries. Thus, the stratification of the confidence region, as often 

seen in closed economy New Keynesian models, is an important risk to be considered in the 
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context of open economy New Keynesian functional structures. In this study, we examine 

another mainstream New Keynesian model, the Clarida, Gali and Gertler (2002) model, in the 

open economy tradition to further explore analytically the possibility of Hopf bifurcations within 

open economy New Keynesian structures. Application of our theoretical results to numerical 

analysis with the Clarida, Gali and Gertler (2002) model would be a challenging project and is 

beyond the scope of this paper, but we find from theoretical analysis of the model that future 

research using numerical methods to locate the model’s bifurcation boundaries would be 

justified, and we provide the theory needed to implement the numerical search and locate Hopf 

bifurcation boundaries. 

 

2. Model 

We investigate the possibility of bifurcations in the open-economy New Keynesian model 

developed by Clarida, Gali, and Gertler (2002). We thereby extend the conclusions of Barnett 

and Duzhak (2008, 2010) to the open economy case. Barnett and Duzhak (2008, 2010) analyze 

bifurcation with a closed-economy New Keynesian model and found both Hopf and period 

doubling bifurcations. 

Clarida, Gali, and Gertler (2002) developed a two-country version of a small open 

economy model, which is based on Clarida, Gali, and Gertler (2001) and Gali and Monacelli 

(1999). Let tx  denote the output gap, h

t  the inflation rate for domestically produced goods and 

services, and tr  
the nominal interest rate, with tE

 
being the expectation operator and tr  denoting 

the small open economy’s natural rate of interest. The lowercase letters denote the logs of the 
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respective variables. Then, following Walsh (2003, pp. 539 - 540), the model of Clarida, Gali, 

and Gertler (2002) can be rewritten in the reduced form as follows: 

1
1

h h

t t t tE x
w


     

  
      

  
,       (1) 

 1 1

1 h

t t t t t t t

w
x E x r E r


 

 
    

 
,        (2) 

h

t t t x tr r x     .          (3) 

The coefficients 0x   and 0   are the policy parameters, which measure the sensitivity of 

the nominal interest rate to changes in output gap and inflation rate, respectively.  In addition, 

  1 1         is a composite parameter with   representing the probability that a firm 

holds its price unchanged in a given period of time, while 1   is the probability that a firm 

resets its price. The parameter  denotes the wage elasticity of labor demand, and 1   denotes 

the elasticity of intertemporal substitution. The parameter w  denotes the growth rate of nominal 

wages, 1 1     is the time discount rate, and   is the population size in the foreign country, 

with 1   being the population size of the home country. Wealth effect is captured by the term 

 .  

 Equation (1) is an inflation adjustment equation for the aggregate price of domestically 

produced goods. Equation (2) is the dynamic IS curve, which is derived from the Euler condition 

of the consumers’ optimization problem. The monetary policy rule (3) is a domestic-inflation-

based current-looking Taylor rule, which completes the model. 

 Substituting (3) for t tr r  into the equation (2), we can reduce the system to a first order 

dynamic system in two equations for domestic inflation and output gap, given by: 

1
1

h h

t t t tE x
w


     

  
      

  
,     
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 1 1

1 h h

t t t t x t t t

w
x E x x E   


 

 
    

 
.       

 Clearly, 0h

t tx    for all t  constitutes a solution (equilibrium) to the system. We can 

write the system in the standard form 1t t tE  A y By  as follows: 

1

1

t t t

h h

t t t

E x x

E 





   
   

   
A B ,          (4) 

where 

0

1
1

w





 
  
 
 

A  and 
   

1
1

1 1
1

x

w

w w 


  

 

 

   
        
  

 
 

B . 

Then, premultiplying the terms on the right hand side by the inverse of the matrix A, the 

system can be reduced to the form 1t t tE  y Cy , where 1C A B , as follows: 

1

1

t t t

h h

t t t

E x x

E 





   
   

   
C           (5) 

where 

 
 

   1 1 11
1 1

1

1 1

1

xw w w
w

w

w

 
  

   


  

 

     
        

   
   

     
    

C . 

 The system (5) is in normal form, in the sense that each equation has only one unknown 

variable evaluated at time 1t  . Note that there were no disturbance terms included in the model, 

so 0t  . For the uniqueness and stability of the equilibrium, both eigenvalues must be outside 

the unit circle. 

 The characteristic polynomial of the coefficient matrix C is given by 

    2

1 0det 0p a a        C I , 
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where 

     0

1 1
1 1 1xa w v w     

 
       , 

and 

     1

1 1
1 1 1 1xa w v w   

 
        , 

which yields 

     

           

1,2

1
2 2

1 1
1 1 1 1

1 1 1 1
1 1 1 1 4 1 1 1 .

x

x x

w v w

w v w w v w 

    
 

        
   

 
        
 

    
                        

 

 To examine the nature of the eigenvalues we need to check the sign of the discriminant 

2

1 04a a   , as shown in Gandolfo (1996). If the discriminant of the quadratic equation is 

strictly negative, so that 

           
2

2

1 0

1 1 1 1
4 1 1 1 1 4 1 1 1 0x xa a w v w w v w         

   

   
                     

   

, 

then the roots of the coefficient matrix C will be complex conjugate numbers in the form 

1,2 a ib   , with ,a b , where 1i     is the imaginary unit. 

 Regarding the system (5), it is algebraically cumbursome to identify the sign of the 

discriminant. Therefore, we assume that the eigenvalues of the system (5) are complex 

conjugates, 1,2 a ib   , 

where 

     1 1 1 1
1 1 1

2 2 2 2
x

a
a w v w   

 

 
         

 
    (6) 
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and 

           
2

1 1 1 1 1
4 1 1 1 1 1 1 1

22
x x

w v w w v wb
 

        
   

             
    

     
   

.  (7) 

 

3. Bifurcation Analysis  

To determine whether a Hopf bifurcation exists in the Clarida, Gali, and Gertler (2002) model, 

we use the methodology suggested by Gandolfo (1996) and Barnett and Duzhak (2008, 2010). 

We first evaluate the Jacobian of the system at the equilibrium point 0h

t tx    for all 

1,2,...t  , and then check whether the conditions of the Hopf Bifurcation Theorem are satisfied. 

For two dimensional systems, we apply the existence part of the Hopf Bifurcation Theorem 

given in Gandolfo (1996, p 492). 

 

Theorem 1: Consider the class of two-dimensional first-order difference equation systems 

produced by the map  ,y f y , 2y , with  vector of parameters, N . Assume for each 

 , there exists a local fixed point,  * *y y  , in the relevant interval at which the eigenvalues 

of the Jacobian matrix, evaluated at   * ,y   , are complex conjugates, 1,2 a ib   , and 

satisfy the following properties: 

(i) 2 2

1 2 1a b      , with 1i   for 1,2i  ,     

where i  is the modulus of the eigenvalue i . Also assume there exists  j = 1, 2, ..., N  such that 

(ii) 
 

*

0
i

j










 


 for i = 1,2.        

Then, there exists a Hopf bifurcation at the equilibrium point   * ** ,y   . 
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With the assumption of a pair of complex conjugate eigenvalues, we may expect to see a 

Hopf bifurcation, if the transversality conditions are satisfied. Using Theorem 1, the conditions 

for the existence of a Hopf bifurcation are stated in the following proposition. 

 

Proposition 1: Let   be the discriminant of the characteristic equation. Then the system (5) 

undergoes a Hopf bifurcation, if and only if 0  and 

 
 *
11

1 1
x

v w

w w



  

  
   

  
.       (8) 

 

Proof: Suppose the system (5) goes through a Hopf bifurcation at  **, xy  , where  * *, *y x  . 

Then, we need to show that 0  and 
 *
11

1 1
x

v w

w w



  

  
   

  
. The existence of a 

Hopf bifurcation  requires a pair of complex conjugate eigenvalues on the unit circle. For the 

eigenvalues to be complex conjugate, the discriminant must be strictly negative, so that 0  . 

 For the second part of the theorem, note that the existence of a Hopf bifurcation requires 

    2 2

1 2mod mod 1a b       by the first condition of Theorem 1. Rewriting the 

condition explicitly by substituting (6) and (7) into it, taking the square of both sides, and solving 

for x , we obtain (8). Therefore, the first condition of Theorem (1) holds, only if 

 11

1 1
x

v w

w w



  

  
   

  
. 
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 In the theorem’s converse direction, suppose 0   and 

 11

1 1
x

v w

w w



  

  
   

  
. Substituting for 

*

x  
into 2 2a b  yields 

   1 2mod mod 1   , which is the first condition in Theorem 1. In order to show that the 

critical value of the parameter x  is a Hopf bifurcation parameter, we check Theorem 1’s second 

condition, which yields 

 
 

*
*

2 2 1
0

2
x x

x x

i x

x x

d d w
a b

d d
  

 

  



     for 1,2i  . 

Thus, both conditions of Theorem 1 are satisfied and we have 

 *
11

1 1
x

v w

w w



  

  
   

  
.       ∎  

 

 Proposition 1 shows formally that taking the parameter x  free to vary and keeping the 

other parameters constant at plausible settings, the model of Clarida, Gali, and Gertler (2002) can 

be expected to undergo a Hopf bifurcation at *

x . 

Note that, the model of Clarida, Gali, and Gertler (2002) differs in several aspects from 

the Gali and Monacelli (2005) model, which we used in another study. Additional paramaters 

exist in the former model. In that model, the parameters w , v , and   play an important role in 

determining the critical value of the bifurcation parameter, as we have shown. The degree to 

which the two models differ depends upon the parameter settings. But it is clear that numerical 

implementation of our theory to locating Hopf bifurcation boundaris in the Clarida, Gali, and 

Gertler (2002) model would be a challenging project, which we now advocate. 
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4. Conclusions  

Bifurcation analysis has been widely used to examine and classify the dynamic behavior of a 

variety of economic models in economic literature. In this paper, we derive the analytical 

conditions for Hopf bifurcation in the open economy New Keynesian model developed by 

Clarida, Gali, and Gertler (2002). Using the Hopf Bifurcation Theorem, we establish the 

conditions for Hopf bifurcation of the model. On theoretical grounds, we show that by varying 

the parameter 
x , while keeping the other parameters constant, the model of Clarida, Gali, and 

Gertler (2002) is vulnerable to Hopf bifurcation at *

x . We also show that the structural 

parameters, w , v , and  , play a significant role in determining the critical value of the 

bifurcation parameter, x .  Our theoretical results need to be confirmed by subsequent numerical 

analysis to locate the Hopf bifurcation boundary and map its shape.  But that numerical analysis 

is beyond the scope of this paper limited to determining the relevant theory.   

A primary objective of the subsequent numerical analysis should be to determine whether 

the Hopf bifurcation boundary crosses relevant confidence regions of the model’s parameters. If 

so, a serious robustness problem would exist in dynamical inferences using the model. But even 

if the bifurcation boundary does not cross the confidence region, policy can move the location of 

the bifurcation boundary by changing the values of policy parameters.  Within this model, the 

central bank should react cautiously to changes in the rate of domestic inflation and the output 

gap and should particularly take into consideration the following structural parameters: price 

rigidity,  , wage inflation , w , and the wealth effect , v , to avoid inducing instability from a 

possible Hopf bifurcation.   
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Our theoretical results are consistent with prior results with other New Keynesian models 

in Barnett and Duzhak (2008, 2010) and Barnett and Eryilmaz (2012). Those results, which have 

been confirmed by numerical analysis, reinforce our conclusion that our theoretical results 

should be used in numerical analysis of bifurcation boundary locations in the New Keynesian 

Clarida, Gali, and Gertler (2002) open-economy model.  
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