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Abstract 
 

Among the many demand specifications in the literature, the Rotterdam model and the Almost 
Ideal Demand System (AIDS) have particularly long histories, have been highly developed, and 
are often applied in consumer demand systems modeling. Using Monte Carlo techniques, we seek 
to determine which model performs best in terms of its ability to recover the true elasticities of 
demand. 
 
In applications, the AIDS model has been used in linearized form, where the linearization is 
accomplished by the choice of a price index to replace the price aggregator function that is within 
the full nonlinear model.  Since the Rotterdam model also is linear in a very similar form, the 
comparison of the Rotterdam model and the AIDS model has been the subject of much speculation 
in the literature.  We derive the formulas for the AIDS model’s elasticities, when the  Törnqvist or 
two modified versions of the Stone price index are used to linearize the model. We not only 
compare the resulting linearized AIDS model with the Rotterdam model, but also with the full 
nonlinear AIDS. 
 
Keywords: Rotterdam Model, Almost Ideal Demand System, consumer demand system, Monte 
Carlo study, flexible functional forms 
 
JEL Classifications: C3, E41, G12, C43, C22 
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1.  Introduction 

 Estimation of demand functions consistent with economic theory has been a highly 

published area in the last forty years. The majority of the currently influential papers have appeared 

following the adoption of flexible functional forms, which rely heavily on duality theory.  The 

Generalized Leontief (Diewert, 1971), the Translog (Christensen et al., 1975), the Rotterdam 

(Theil, 1965, 1975; Barten, 1964, 1968, 1977), and the Almost Ideal Demand System or AIDS 

(Deaton and Muellbauer, 1980a,b) are examples of popular demand models. Their functional forms 

are locally flexible, in the sense that they do not put a priori restrictions on the possible elasticities 

at a point.  These models possess enough parameters to approximate any elasticities at a given 

point. But locally flexible functional forms often exhibit small regular regions consistent with 

microeconomic theory. As a result, a number of alternative flexible functional forms with larger 

regular regions have been developed. Examples include the Quadratic AIDS model (QUAIDS) 

(Banks et al., 1997), the Laurent model (Barnett, 1983, 1985; Barnett and Lee 1985; Barnett et al. 

1985, 1987), and the Generalized Exponential Form (G.E.F) (Cooper and McLaren, 1996). 

 As an alternative to locally flexible functional forms, a seminonparametric approach has 

been used to specify globally flexible functional forms, having enough parameters to approach 

arbitrary elasticities at all points asymptotically. Gallant (1981) proposed the Fourier model, using 

the sin/cos series expansions. The Asymptotically Ideal Model (Barnett and Jonas, 1983; Barnett 

and Yue, 1998) applies Gallant’s global approach to the Müntz-Szatz series expansion. 

 Although many functional forms are available, economic theory does not answer the 

question of which specification is the best to choose in estimating demand functions using a given 

data set.  This is ambiguity is unavoidable, since the space of neoclassical functions cannot be 

spanned by any model having a finite number of parameters.  Different approaches for comparison 

have been proposed in the literature. 

 An elementary approach consists of estimating different specifications of demand functions 

with a given data set and selecting the one that has the best goodness of fit statistics (Berndt, 

Darrough and Diewert, 1977; Fisher, Fleissig and Serletis, 2001).  A second approach uses the fact 

that the properties of demand functions derived from neoclassical preferences are known only in 

the region within which the functions satisfy theoretical regularity conditions. Knowing the 

location and size of the regular region can help support the choice of one functional form over 

another (Caves and Christensen, 1980; Barnett and Lee, 1985; Barnett et al., 1985).  A third 
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approach uses a Monte Carlo study to explore accuracy of the demand model, when the true 

elasticities of substitutions are known (Barnett and Choi, 1989). 

 In applied microeconomics, the AIDS and the Rotterdam models are frequently used, since 

each can be estimated in a linearized form with theoretical restrictions easily imposed and tested.  

Earlier linear demand models possessed awkward connections with economic theory that tended to 

be difficult to impose or test.  Studies that compare these two models have been few, even though 

Deaton and Muellbauer (1980a) pointed out the striking similarity between these two models.  In 

particular, the AIDS model with linearizing price index (LA-AIDS) can be rewritten in a first 

difference form, such that LA-AIDS has the same dependent variables as the Rotterdam model in 

its absolute price version. Alston and Chalfant (1993) developed a statistical test for comparing the 

LA-AIDS model versus the Rotterdam model with real data, but no Monte Carlo comparisons of 

the two models have ever been published.  

 Although current computer capabilities permit nonlinear estimation, the linear approximated 

AIDS model is still widely used in the place of the full AIDS.  In addition, no Monte Carlo study 

has ever compared the linearized AIDS with the full AIDS model in their ability correctly to 

approximate known elasticities of substitution.1  We conduct a Monte Carlo study comparing the 

linearized AIDS model, the full AIDS model, and the Rotterdam model. 

 

2.  Elasticities of substitution 

 The concept of elasticity of substitution between two factors was first introduced by Hicks 

(1932) as a tool for analyzing changes in the distribution of income between capital and labor, 

when factor price ratios change.  Because of its ability to classify goods as complements or 

substitutes and its interpretation as curvature of isoquants, elasticities of substitution carry much 

information. 

 Allen and Hicks (1934) proposed generalizations to more than two factors.  The 

generalizations are known as the Hicks's elasticity of substitution (HES) and a version of the 

current Allen-Uzawa elasticity of substitution (AUES).  The HES is no longer used, since it ignores 

substitution among factors when relative prices change.  Allen (1938) and Uzawa (1962) improved 

                                                 
1 Alston, Foster, and Green (1994) generated data with price elasticities consistent with the nonlinear AIDS formulas, 
and tested the ability of four linear approximate AIDS to recover the known elasticities.   
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upon the second generalization, and that improved formula is now the one known as the AUES, 

having formula is given by:  
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where the subscripts on the cost function, C , indicate differentiation with respect to the indicated 

prices, and ( , ) log ( , ) / logij i jU x U pε = ∂ ∂p p  is the Hicksian elasticity of demand for good i  with 

respect to the price of good j , while ( , )jw Up  is the expenditure share of good j .  The vector of n 

prices is p and U is the utility level. 

 Another generalization of the two-input elasticity, known as the Morishima elasticity of 

substitution, was proposed by Morishima (1967) and advocated by Blackorby and Russell (1981, 

1989).  It is given by 
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where the last line of the equation is based upon normalization of the price of good j  to unity.  In 

accordance with the usual preference in the literature, we choose to use the Allen-Uzawa elasticity 

of substitution (AUES). 

 With Hicksian demand functions, we compute the AUES directly.  But when we estimate 

the Marshallian demand functions, we recover the elasticities of substitution from the Slutsky 
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equation in its elasticities form, ( , ) ( , ) ( , )ij ij j iU m w e mε ε= +p p p , where ie  is the income elasticity 

of the demand for good i , m is total consumption expenditure, and ( , )ij mε p  is the uncompensated 

cross-price elasticity for good i . 

3.  Model description 

 We briefly introduce the Rotterdam model in its absolute price version and the AIDS 

model.  We provide the theoretical constraints that must be satisfied for the models to be consistent 

with consumer theory.  We also provide the formulas for the various elasticities of demand that we 

use for those models. 

 3.1  The absolute price version of the Rotterdam model2 

 The absolute price version of the model is: 

    
1

n
it it i t ij jt it

j
w Dq DQ Dpμ π υ

=
= + +∑     (3) 

where , , 1
1 ( )
2it i t i tw w w −= +  is the average budget share of good i between the periods 1−t  and t , 

υit is a stochastic disturbance, and 1
n

t it itiDQ w Dq== ∑  can be shown is the log-change in real 

income. 

 The model is estimated subject to the following theoretical restrictions: 

    1
1

=∑
=

n

i
iμ   for Engel aggregation    (4) 

    0
1

=∑
=

n

i
ijπ   for linear homogeneity,    (5) 

and symmetry, ij jiπ π= .  With this model, the Slutsky substitution matrix is ][ ijπ . 

 When the linear homogeneity restriction is imposed, each equation has n  unknown 

parameters and n  independent variables. The system can be estimated with one equation deleted 

after imposing Engel aggregation and symmetry. If equation n  is deleted, its parameters can be 

recovered by summing the 1−n  equations and by using the constraints of homogeneity, Engel 

aggregation, and symmetry.  The imposition of theoretical restrictions on the model has the virtue 

of reducing the number of unknown parameters and improving the efficiency of the estimation.   

                                                 
2 See Barten (1964), Barnett (1979), and Theil (1965, 1975a,b) for the derivations. 
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 Equation (3) subject to the homogeneity restriction becomes 

    ( )1

1

n
it it i t ij jt nt it

j
w Dq DQ Dp Dpμ π υ

−

=
= + − +∑ .  (6) 

Estimation can be subject to the restriction of symmetry.  Theory also requires negative semi-

definiteness of the Slutsky matrix; but, rather than being imposed, that restriction usually is just 

checked at the point of approximation.  With imposed linear homogeneity restriction, the rank of 

][ ijπ  becomes 1−n .  The condition for this matrix to be negative semi-definite in the three-good 

case is 

  011 <π         and       11 12
11 22 12 21

21 22
det 0.

π π
π π π π

π π
⎛ ⎞⎡ ⎤

= − >⎜ ⎟⎢ ⎥
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 These restrictions could be imposed during estimation. But as the number of goods 

increases, that imposition becomes computationally burdensome and hence rarely is imposed but 

rather just checked after estimation.  In our comparisons of the Rotterdam with the AIDS model, 

we report the percent of replications producing non-violation of the negative semi-definiteness as 

an indicator of regularity.  In particular, regularity percentage is defined in our results as the percent 

of non-violations of negative semi-definiteness. 

 3.2 The full AIDS (PIGLOG) model 

 The AIDS model in budget shares is 

    log logi i ik k i
k

mw p
P
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where the price deflator of the logarithm of income is  
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 The restrictions on the demand functions are deduced from the cost function, using 

Shephard's duality lemma.  The following are the resulting conditions imposed during estimation of 

the constrained model: 

          1
1

=∑
=

n

i
iα   for adding up,     (10) 
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 Equation (8) can be interpreted as a Marshallian or uncompensated demand function in 

budget shares. The Hicksian price elasticities of good i  with respect to good j  can be derived from 

the Marshallian price elasticities by using the Slutsky equation in elasticities.  The expression for 

the Marshallian price elasticity becomes 

   1 [ ( log )]M
ij ij ij i j kj k

ki
p

w
ε δ γ β α γ= − + − + ∑ ,    (13) 

where ijδ  is the Kronecker delta, defined as: 

    1=ijδ      if  ji = ,      

       0=     otherwise,     (14) 

while the income elasticity for good i  is 

      1 i
i

iw
β

η = + .     (15) 

 Unlike the Rotterdam model, the AIDS model permits testing negative semi-definiteness of 

the Slutsky matrix at each data point.  Using the Slutsky equation in terms of elasticities and the 

adding-up restriction, we find that the sum of Hicksian elasticities will seldom equal zero, where 

that sum is 

1 11 ( / )Hn n
ij j ij j i ii inw w wε γ β= == − + + +∑ ∑ . 

 

Hence the Slutsky matrix is negative semi-definite, if 
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H H H H
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where H
ijε  is the Hicksian elasticity for good i  with respect to the price of good j . Equation (16) 

for the AIDS model is analogous to equation (7) for the Rotterdam model and can be used to 

compute an upper bound on the percent of non-violations of negative semi-definiteness of the 

Slutsky matrix    
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 3.3  The linear approximation of the AIDS model: LA-AIDS 

 In applications, the nonlinearity of the AIDS model is usually viewed as a technical 

problem to be circumvent by a linearizing approximation to income’s price deflator (9).3  In fact in 

the original literature on this model, the model was not called AIDS until after linearization.  The 

fully nonlinear model described in section 3.2 above was called PIGLOG.  Deaton and Muellbauer 

(1980a,b) suggest Stone's price index.  When linearized by the use of Stone’s index, PIGLOG was 

named the almost ideal demand system (AIDS) by Deaton and Muellbauer.  Stone's geometric price 

index is given by 

     
1

jn w
j

j
P p

=
= ∏ .     (17) 

 Since we are calling PIGLOG the AIDS model, even in its fully nonlinear form, we use the 

designation LA-AIDS (Linear approximated AIDS) to designate the special cases of PIGLOG 

produced by linearization by Stone’s index and by other linearizing price indexes that we consider.  

Estimation of the resulting LA-AIDS model has a potential, but usually overlooked, simultaneity 

bias problem, because the expenditure share iw  is on both sides of the demand function for good i .  

Another issue with the use of Stone's index to linearize the model is that the simplification in 

estimation of LA-AIDS is offset by difficulties in deriving the elasticities.  We compute the correct 

elasticities using Green and Alston (1990). 

 The  Marshallian price elasticities, expressed in expenditure share form, are 

  log log 1
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j j i j
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p p w p
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∂∂ ∂

= = − + = − +
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where again, as in (14),  

   ijδ  is the Kronecker delta,      (19) 

and the income elasticities are 

   log log 11 1 .
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Applying (18) to the demand functions (8) yields 
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3 See, e.g., Alston et al (1994). 



 9

 If we differentiate the logarithm of Stone's price index with respect to the logarithm of the 

price of good j  and use (18), we have  

   loglog log
log log

k
j k k

kj j

wP w w p
p p

∂∂
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If we substitute (22) into (21), the expression for the Marshallian price elasticity becomes 
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 The elasticity of good i  with respect to the price of good j  is a function of all price 

elasticities.  Equation (23) is a system of 2n  equations with 2n  unknown parameters.  In matrix 

form, equation (23) can be written as 

     ( )′= − +E A kc E I ,     (24) 

where [ ]ijε=E  and [ ]ija=A  are nn×  matrices with E  being the matrix of elasticities and with 

/ /ij ij ij i i j ia w wδ γ ϖ β= − + − .  The column vector 1 2[ , , , ]nc c c ′=c …  has elements logj j jc w p= , 

the vector 1 2[ , , , ]nk k k ′=k …  has elements /i i ik wβ= , and I is the identity matrix. 

 Solving (24) for E  yields 

     1[ ] [ ]−′= + + −E kc I A I I .    (25) 

The income elasticities from the LA-AIDS are different from (15).  Applying (20) to (8) and using 

Stone's price index, we can derive the income elasticity in budget share form from 

    log 11
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i i
i
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η
∂ ∂
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Using the demand for good i  in budget share (8), the partial derivative with respect to income is 

     log .
log log

i
i i
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β β
∂ ∂

= −
∂ ∂

    (27) 

The derivative of the Stone's price index in (27) can be written as  

   log log log ( 1).
log log

j
j i j j

j j

wP p w p
m m

η
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= = −∑ ∑
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Hence, the income elasticity of good i  is related to the income elasticities of all other goods by the 

following expression 
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    1 1 log ( 1)i
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η η
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 Equation (29) can be written in vector form as 

      ′= −n k kc n ,     (30) 

 

where k and c are as defined in (24), and n is an n-dimensional column vector having elements 

1i in η= − . Solving (30) for n yields the following expression 

     1[ ]−′= +n Ι kc k .     (31) 

As in the nonlinear AIDS case, the Allen-Uzawa elasticities of substitution are derived from the 

Hicksian elasticities and the Slutsky equation. 

4.  Non-homothetic preferences and the true elasticities 

 The Leontief technology and the Arrow, Chenery, Minhas and Solow (1961) constant 

elasticity of substitution production function yield elasticity of substitution between two goods 

equal respectively to zero and a constant. Both of those early models have elasticities of 

substitution that are the same for all pairs of goods and do not vary as quantities vary.  Even in the 

two good case, these models are defective, since decreasing marginal returns are associated with 

varying elasticities of substitution between the two goods.  

The generalized-quadratic functional form (Kadiyala, 1972; Denny 1974) weakens those restrictive 

implications. That utility function is  

    

1
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1 2
1 1
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n n
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ρ ρ
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The following restrictions on the parameters guarantee that the utility function satisfies the 

regularity conditions of quasi-concavity and monotonicity: 

 ;2/1<ρ       
2 2

1 1
1;ij

i j
a

= =
=∑ ∑       0ija >    for all  ji, ;      ij jia a=    for all  ji ≠ . (33) 

The only restriction on the scaling parameter, A, is positivity.  When n = 2, the expression for the 

elasticity of substitution has a simple form given by 

R+−
=

ρ
ξ

1
1*

12 ,          (34) 
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where  

    
2

11 22 12

11 12 12 22( )( )
a a aR

a Q a a a Qρ ρρ −
−

= −
+ +

   (35) 

and 12 / QQQ = . 

 The utility function (32) is homothetic in iQ , i = 1, ... ,n.  Homotheticity implies that all 

income elasticities are unitary.  The utility function can be transformed into a non-homothetic 

utility function by defining the quantities iQ  to be supernumerary quantities, iii axQ −= , with ix  

being the quantity of good i  and ia  a constant. 

 To retain the simplicity of the two-good generalized quadratic, while introducing a third 

good, with the possibility of different elasticities of substitution between different pairs of goods, 

we adopt the weakly-separable-branch generalized-quadratic defined by (36).  This model was 

originated by Barnett (1977) and called WS-branch.  In adopting this model for our Monte Carlo 

study, we follow Barnett and Choi (1989).  The resulting utility function in the 3-goods case is 

   
1

2 2 2
1 1 2 2 3 11 12 221 1 2 2( ( , ), ( )) [ ]U Q x x Q x A a Q a Q Q a Qρ ρ ρ ρ ρ= + + , (36) 

where 1Q  and 2Q  are aggregator functions defined as follows 

   
12 2 21 1 1 2 11 1 12 1 2 22 2( , ) [ ]Q Q y y B b y b y y b yδ δ δ δ δ= = + + ,  (37) 

with supernumerary quantities i i iy x a= − , 2,1=i  and with 2 2 3 3 3 3( )Q Q x y x a= = = − .  The 

parameters are A, B, aij, bij, δ, and ρ. 

 Parameter constraints similar to (33) are sufficient to ensure regularity of the aggregator 

function (37).  The scaling parameters A  and B  in (36) and (37) produce monotonic 

transformations of the utility function, and hence A and B can be set equal to unity without loss of 

generality. 

 Dual to the quantity aggregator function, ),( 211 yyQ , there exists a price aggregator 

function, p* = 
1QP , such that the identity 

1
2

1 1 2 1( , ) Q i iiQ y y P p y== ∑  holds, whenever ),( 21 yy  is the 

solution to ii i yp∑=

2

1
min  subject to kyyQ =),( 211 , with k  a positive constant.  The price index 

dual to the quantity aggregator function can be computed directly as the ratio between total 

expenditure on 1y  and 2y  and the quantity aggregate 1Q , in accordance with the well-known Fisher 
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factor reversal test. The use of this exact price aggregate will have valuable implications in our 

simplification of the income elasticities formulas. 

 The relevant formulas for the elasticities can be derived from the usual partial derivatives of 

the demand functions with respect to prices and income.  However, Barnett and Choi (1989) 

derived formulas from the income and prices elasticities and for the elasticities of substitution in a 

manner that benefits from the simplicity of the Allen-Uzawa elasticities of substitution.  For 

}2,1{∈i  and 3=j , Barnett and Choi found that the elasticity of substitution between ix  and jx  is  

ij

iijj

xx
axax

ap

))((

.1

*
12

12

−−

−
=

ξ
σ ,      (38) 

where *
12ξ is the elasticity of substitution between the exact aggregates 1Q  and 2Q , p  is the vector 

of income normalized prices, mpp ii /= , with “income” defined to mean total consumption 

expenditure, kk k xpm ∑ =
=

3

1
. The income elasticities are given by 

 1
1

j j
j

j

x a
pa x

η
−

=
−

,     for     .3,2,1=j     (39) 

 The supernumerary quantities 1y  and 2y  are weakly separable from 3y .  Therefore the 

elasticity of substitution between 1y  and 2y , and hence between 1x  and 2x , is calculated using the 

aggregator function 1Q  defined by equation (37). Therefore the elasticity of substitution between 

1y  and 2y  can be written as 

  '12 1
1

R+−
=

δ
ξ       (40) 

where 

  
))((

*'
22121211

2
122211

δδδ
ybbbyb

bbbR
++

−
−= − ,    (41) 

 

and 12 / yyy = .  The elasticity of substitution between 1x  and 2x   is 

  12 1 1 2 2
12

1 2

( )( )
1

x a x a
pa x x

ξσ − −
=

−
.    (42) 
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 The compensated cross-price elasticities are derived from the Allen-Uzawa elasticities of 

substitution by using their relationship with cross-price elasticities and expenditure shares: 

    H
ij ij jwπ σ= ,     (43) 

where H
ijπ  is the Hicksian elasticity of the demand for good i  with respect to the price of good j  

and where the expenditure shares are /j j j k kkw p x p x= ∑ . 

5.  Data-generation process 

 The data are generated for three goods from the generalized quadratic utility function, 

defined by equations (36) and (37).  Appendix A1 describes the selection of the parameters and the 

median data point at which we set the true elasticities. The data generation then proceeded in 

accordance with the steps described below and illustrated by figure 1.  

Step 1:  Generate a set of three autoregressive one processes containing 61 observations on each.  

The three generated variables are the quantities 1y , 2y  and total expenditure, m1
4, on those two 

supernumerary quantities within the 2-goods branch of the utility tree. 

Step 2:  Set, in each of the nine cases, the parameters, 11 12 22 1 2( , , , , , )b b b a a δ  of the inner 

aggregator function, Q1, defined by equation (37), to attain at the median income  the preselected 

values for the elasticities of Q1.  In the tables and discussion, the nine cases are called cases 1, 2, 

...., 9.  The parameter B is normalized to equal 1.0.   

Step 3:  Solve for the price time series, 1p  and 2p , from the first order conditions for total-

expenditure constrained maximization of 1Q , defined by equation (37). 

Step 4:  Compute the aggregate 1Q  and the dual price index *p  that satisfy the Fisher factor 

reversal test.5 

Step 5: Generate the supernumerary quantity 2Q 6 following an autoregressive one time series 

containing 61 observations on the supernumerary quantity Q2. 

                                                 
4 The three time series are as follows : y1, t = 3 + .89y1, t-1 + er1, t;  y2, t = 5 + .79y2, t-1 + er2, t ; and m1, t  = 125 + .865m1, t-1 + 
er3, t , where er1, er2, er3 are disturbances that are independently and normally distributed with mean zero and variance 
1.  
5  Fisher’s factor reversal test assures that total expenditure, m1, on the components, y1 and y2, of the aggregate equals 
expenditure on the aggregate, Q1, at its dual price p*. 
6 The time series Q2, t = y2, t = 9 + .9y2, t-1 + er4, t, where the er4 are disturbances that are independently and normally 
distributed with mean zero and variance 1. 
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Step 6:  Set the parameters, 3 11 12 22( , , , , )a a a a ρ of the outer utility function, U,  defined by 

equation (36), to attain, at the median income nine sets of preselected values of elasticities of U.  

The parameter A is normalized at 1.0. 

Step 7:  Solve for the price time series for p3, from the first order conditions for total-expenditure 

constrained maximization of U, defined by equation (36).  

Step 8:  Compute x1 = y1 + a1 and  x2 = y2 + a2 and x3 = Q2 + a3. 

Step 9: Normalize the prices and quantities (x1, x2, x3) such that at the median income, they 

correspond to the point at which we obtained the true elasticities.   

Step 10: Add disturbances to the quantities, x1, x2, and x3, obtained from the previous steps.  Those 

disturbance stochastic processes are normally distributed with mean zero and variance 1. We 

increase the variability of the disturbances to capture the effects of increasing noise on the data. 

Step 11: Compute total expenditure on x1, x2, and x3. 

Step 12: Estimate the models, and bootstrap those estimations 1,000 times, while adding the noise 

to the ix 's at each replication and recalculating total expenditure on x1, x2, and x3.  To avoid 

correlation between the disturbances that are added to the reference data sets, we generate a set of 

10,000 random variables that are used as seeds in generating the normally distributed errors. The 

1,000 estimates of the price and income elasticities and the elasticities of substitution are 

summarized by their means and standard errors, which are used to compare the estimated 

elasticities to the true elasticities. 
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6.  Estimation methods 

 We employ a version of iterated seemingly unrelated regression (SUR) to estimate the full 

nonlinear AIDS (PIGLOG) model.  We check for robustness by also estimating by full information 

maximum likelihood (FIML).  We use FIML to estimate the absolute price version of the 

Rotterdam model and the linearized AIDS model. 

Set a1, a2, b11, 
b12, b22, δ to 
attain given 

elasticities of 
Q1

 

Solve for  
(p1, p2), and 

then compute 
(Q1,p*)

F.O.C. for 
expenditure 
constrained 
maximization 
of Q1 

Generate 
 

y1 

Generate 
 

y2 

Generate 
 

m1 

Set a3, a11, 
a12, a22,  ρ to 
attain given 

elasticities of 
U 

Generate Q2, and 
then solve  for p3. 

Compute m. 

F.O.C. for 
total-
expenditure 
constrained 
maximization 
of U 

Figure 1:  Data generation flow chart for 
each of the 9 cases 
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 In estimating the nonlinear AIDS model, we first pick starting values for the parameters of 

income’s price deflator (9).  We substitute those starting values into the income deflator and 

estimate the demand system (8), with the parameters of (9) treated as fixed.  In the next step, the 

resulting parameters for (8) are substituted into (9), and the iteration process continues until 

convergence, defined to be when the differences between the parameter values in two successive 

estimation are all less than or equal to 210− .  This iterated SUR estimation procedure is analogous 

to the one conventionally used with the relative price version of the Rotterdam model, which has a 

similar source of nonlinearity from its use of the parameterized Frisch price index.  As has been 

shown with the relative price version of the Rotterdam model, this iterated SUR estimator produces 

consistent estimates of all parameters and is considerably more convenient to use than FIML 

estimation, when the source of nonlinearity is a price aggregator function embedded within the 

model.7 

 The Rotterdam model represented by equation (3) will be estimated with the following 

assumptions on the regressors and the disturbance vector.  For each time 1, and , ,t t ntt DQ Dp Dp…  

are nonstochastic.  The disturbance vector, 1( , , )t t ntυ υ ′=υ … , has zero mean and time-independent 

contemporaneous covariance matrix, [ ]ijω , which is a symmetric positive semi-definite nn×  

matrix with rank 1−n  and satisfies 1 0n
ijj ω= =∑  for each i . Also E 0][ =jtisεε  for ts ≠ . 

 In addition, the theoretical symmetry of the Slutsky coefficient matrix ][ ijπ  will be imposed 

along with the linear homogeneity restrictions, ∑ =
=

n

j ij1
0π  and ∑=

=
n

i i1
1μ . 

7.  Performance of Different Price Approximations 

 It is common in the literature to linearize the AIDS model by using Stone’s nonparametric 

statistical index, (17), to approximate income’s parameterized price-deflator.  But that 

approximation has shortcomings.  Pashardes (1993) has shown that errors resulting from that 

approximation can be seen as an omitted variable.  The resulting estimates of the parameters of the 

demand functions may thereby be biased.  In addition, Moschini(1995) pointed out that Stone's 

                                                 
7Although this estimator is consistent, it is not asymptotically efficient.  Barnett’s (1976) result on the asymptotic 
equivalence of FIML with iterated Aitken are not applicable here, since his proof assumes no overlap between the 
parameters on each side of the iteration.  The purpose of this iterated SUR estimator with the relative price version of 
the Rotterdam model has been to capture the consistency acquired from joint estimation, while minimizing 
transmission of errors in estimation of the price aggregator function’s parameters to the estimators of the demand 
function’s parameters.  We explore that potential contamination by also using FIML for comparison.   
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index failed to satisfy the "commensurability" property, in the sense that the growth rate of the 

price index is not invariant to the unit of measurement of prices.  Moschini suggests three 

alternative indexes: the Törnqvist index and two normalized forms of the Stone index.8  In this 

section, we will investigate whether these alternative price approximations perform better or worse 

than the exact price index, when preferences are generated from Barnett’s (1977) WS-branch 

model. 

 7.1  The Törnqvist price index 

 Diewert (1976) showed that the Törnqvist index is exact for the translog unit cost function,9  

  *
0 0

1 1 1

1log ( ) log log log
2

N N N
k k kj k j

k k j
c p p p pα α γ

= = =
= + +∑ ∑ ∑ ,   (44) 

where jiij γγ = , ∑ =
=

N

k i1
1α , and 0

1
=∑ =

N

k kjα  for Nk ,,2,1 …= .  Therefore, the Törnqvist price 

index is a superlative price index, in the sense defined by Diewert (1976).  The fixed-base 

Törnqvist price index (often called the Divisia price index in discrete time, when chained)  is 

defined by: 

    0
0

1log ( ) log
2

jtT
t jt j

j j

p
P w w

p
= +∑ .    (45) 

 Hence, 

  0 0

1 1

log 1 1 1log log
log 2 log 2 2

T n nt kt
jt kt k j

k kjt jt

P ww p p w
p p= =

⎡ ⎤∂ ∂
= + − +∑ ∑⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
   

 

            0
01

log1 ( ) log
2 log

n kt kt
jt j kt

k jtk

p ww w w
pp=

⎡ ⎤⎛ ⎞ ∂
⎢ ⎥= + + ⎜ ⎟∑ ⎜ ⎟ ∂⎢ ⎥⎝ ⎠⎣ ⎦

     

 

                                                 
8We follow Moschini in using fixed base indexes, since chained indexes would diverge further from the underlying 
theory on which the AIDS model was derived.  Nevertheless, we plan future research on the robustness of our 
conclusions to the use of chained indexes. 
9A price index P is exact for a neoclassical aggregator function  f  having unit cost function dual c, if P(p1,p2,s1,s2) = 
c(p2)/c(p1), where (x1,x2) is the solution to the maximization of the aggregator function  f  subject to total cost 
constraint.   
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          0
01

1 ( ) log ( )
2

n kt
jt j kt kj kj

k k

pw w w
p

ε δ
=

⎡ ⎤⎛ ⎞
⎢ ⎥= + + +⎜ ⎟∑ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

,   (46) 

 

where εkj is the Marshallian cross price elasticity, (18), and  δkj is the Kronecker delta (14).  

Substituting (46) into (21), the uncompensated cross-price elasticity of demand for good i  with 

respect to the price of good j  is  

  0
01

1 ( ) log ( )
2

nij i kt
ij ij jt j kt kj kj

ki i k

pw w w
w w p

γ β
ε δ ε δ

=

⎡ ⎤⎛ ⎞⎛ ⎞ ⎢ ⎥= − + − + + +⎜ ⎟∑⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦
. (47) 

 Let E be the matrix of price elasticities.  Equation (47) can be written in matrix notation as  

    *
1* ( )
2
⎡ ⎤′= − +⎢ ⎥⎣ ⎦

E A kc E I ,     (48) 

where [ ]ijε=E  and ** ija⎡ ⎤= ⎣ ⎦A  are nn×  matrices, with E the matrix of elasticities, and 

0
* ( )

/
2

i jt j
ij ij ij i

i

w w
a w

w
β

δ γ
+

= − + − , * * *
1 2* ( , , , )nc c c ′=c …  with *

0log jt
j j

j

p
c w

p

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

, and 

1 2( , , , )nk k k ′=K …  with /i i ik wβ= .  Solving (48) for E yields 

    ( )
1

*
1 *
2

−⎛ ⎞′= + + −⎜ ⎟
⎝ ⎠

E I kc A I I .    (49) 

 The derivation of the income elasticities is analogous and uses  

 01

log 1 log
log 2 log

T n kt k

k k

p wP
m mp=

⎛ ⎞ ∂∂
= ⎜ ⎟∑ ⎜ ⎟∂ ∂⎝ ⎠

   

     0
1 log ( 1).
2

n kt
kt k

k k

pw
p

η
⎛ ⎞

= −⎜ ⎟∑ ⎜ ⎟
⎝ ⎠

    (50) 

Substituting (50) into the general expression for income elasticity as a function of the derivative of 

the log-change of the price index with respect to income, we obtain  

   0
1 11 log ( 1)

2

n kt
i i kt k

ki k

pw
w p

η β η
⎡ ⎤⎛ ⎞
⎢ ⎥= + − −⎜ ⎟∑ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    (51) 

 This expression can be written in matrix notation as follows: 
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     *
1
2

′= −n k kc n ,     (52) 

where n is as defined in (30).  Hence n is an n dimensional vector with elements 1−= iin η .  After 

some manipulation, the income elasticities are obtained.  In matrix notation, after solving for n, we 

get 

     
1

*
1
2

−⎛ ⎞′= +⎜ ⎟
⎝ ⎠

n I kc k      (53). 

 7.2  A first modified Stone's index (Paasche-like index ) 

 As shown by Moschini (1995), Stone's index can be modified to be invariant to the unit of 

measurement.  We call the modified index the quasi-Paasche index, since it uses current period 

expenditure weights.  The resulting price index in logarithms is  

     0log logP kt
t kt

k k

pP w
p

= ∑ .    (54) 

Using this price index, the price elasticities will be slightly different from those generated using 

Stone's index.  Indeed, equation (22) becomes, after some manipulations, 

   0
log loglog
log log

P
t kt kt

jt kt
kjt jtk

P p ww w
p pp

∂ ∂
= +∑

∂ ∂
    (55) 

Then the Marshallian price elasticities become analogous to (39), but with kplog  replaced by 

0log / logkt kp p .  We substitute (55) into (21) to acquire the price elasticities.  In matrix notation, 

the matrix of price elasticities is given by 

    ( ) ( )
1

* ,
−

′= + + −E I kc A I I      (56) 

where the variables are as defined in section 3.3.   

 We now compute the income derivatives of the price index: 

  01

log log
log log

P nt kt kt

kt tk

P p w
m mp=

⎛ ⎞∂ ∂
= ⎜ ⎟∑ ⎜ ⎟∂ ∂⎝ ⎠

    

     0log ( 1)
n kt

kt k
k k

pw
p

η
⎛ ⎞

= −⎜ ⎟∑ ⎜ ⎟
⎝ ⎠

.    (57) 
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In matrix notation, we have the following result, which is the analogous to (52): 

     *′= −n k kc n ,     (58) 

where the variables are as previously defined.  Solving for n, we get 

     ( ) 1
*

−
′= +n I kc k .     (59) 

 7.3  A second modified Stone's index (Laspeyres-like index) 

 Moschini (1995) also proposed a Laspeyres-like modification, PL, of Stone’s index.  This 

modification is the analog to the Laspeyres index in logarithms, with weights computed from base 

period expenditures.  The index is 

    0
0log log jtL

t j
j j

p
P w

p
= ∑ .     (60) 

Then it follows immediately that 

    0log
log

L
t

j
jt

P w
p

∂
=

∂
.      (61) 

The price elasticity of good i  with respect to the price of good j  is given by 

    0ij i
ij ij j

it it
w

w w
γ β

ε δ= − + − .     (62) 

 The income elasticity of good i  becomes  

     1 i
i

itw
β

η = + ,      (63) 

which is the same as (15) for the full nonlinear AIDS model.  The formulas for the elasticities in 

this case are close to those of the full nonlinear AIDS, but not identical for the price elasticities.  

 

8.  Estimation Results  

 Tables 1-4 summarize the stochastic properties of the generated data. We report the mean 

and standard deviations of the quantities of three commodities, 21, xx  and 3x , of their respective 

prices, 21, pp  and 3p , and of the total-expenditure processes. Total expenditure appears more 

volatile than prices and quantities, as is consistent with real world data. We use four specifications 
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of the total-expenditure processes, m2, m3, m4, and m5.10  See the footnote to table 1 for the 

definition of the four specifications.11  Tables 5 - 8 provide comparisons of performance of the 

Rotterdam model with the full nonlinear AIDS (PIGLOG) model. 

Looking at the estimates of income elasticities, we observe that the two models yield similar 

results. Quantitatively, when the AIDS overestimates or underestimates the income elasticities, the 

Rotterdam also does. Qualitatively though, the results are similar. 

The two models depart from one another in their performance in recovering the true 

elasticities of substitution. In cases 1, 2, and 7, where the true elasticity of substitution among 

goods in the inner aggregator function, 12σ , is high and low among pairs of goods in different 

aggregator functions, 13σ  and 23σ , both models produce higher estimates of 12σ , with the AIDS 

estimates lower than the Rotterdam estimates. The estimates of 13σ  from the Rotterdam are slightly 

closer to the true values and the ranking of the two models in estimating 23σ  favors the Rotterdam 

in two out of three cases. Qualitatively though, the Rotterdam dominates.  In fact the AIDS 

misclassifies goods 1 and 3 as complements, when they are substitutes by construction.12  

When all elasticities of substitution, 12σ , 13σ , 23σ , are moderately high (cases 3 and 5), 

both models perform relatively well in estimating all three of the elasticities of substitution.  This 

finding that the Rotterdam model produces satisfactory estimates of elasticities of substitution in 

this case corroborates Barnett and Choi (1989), who acquired similarly positive results for the 

Rotterdam model with data produced from homothetic preferences.  

 The same observations apply when the elasticities of substitution are all low, as in 

case 6. Quantitatively, both models overestimate the elasticities, but the Rotterdam estimates of 13σ  

and 23σ  are always slightly smaller than the AIDS estimates. When, as in case 4, the elasticity 

within the aggregator function ( 12σ ) is low and higher between goods in different aggregator 

functions, both models overestimate the lower elasticities ( 12σ , 23σ ), and underestimate the higher 

elasticity of substitution.  

                                                 
10Recall that m1 has already been defined to be expenditure on only two of the three supernumerary quantities. 
11In the specifications of the total expenditure processes, m2, m3, m4, and m5, the errors in total expenditure are a 
combination of the errors in the quantities. 
12This tendency to classify two goods as complements, when they are actually substitutes, has been found previously 
for the translog model by Guilkey and Lovell (1980) and Guilkey, Lovell and Sickles (1983). 
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But in cases 8 and 9, all of the true elasticities of substitution are generally unusually high.  

In such cases, indifference curves are almost linear.  In those cases, the two models performed 

poorly in estimating the higher elasticity of substitution between goods within the inner aggregator 

function, 12σ  (case 9). The precision of that estimated elasticity is very low, with the standard 

deviation being about three times greater than the estimated value of the elasticity. The AIDS 

accommodated the high elasticities better than the Rotterdam, since AIDS performed well in case 8 

for the four specifications of the disturbances.  

In case 9, that result on low precision was found with all of our specifications of the total 

expenditure process, as seen in tables 5 through 8. Surprisingly, that low precision does not appear 

for the estimated substitutability between pairs of goods in different aggregator functions. For those 

pairs of good in cases 8 and 9, the two models yield positive, very high elasticities of substitution 

with small standard deviations. This high precision relative to that of the estimated elasticity 

between goods 1 and 2 is an unexpected finding. 

 A consistent pattern appears in the standard errors of the two models and in the regularity 

condition column of the tables. The AIDS produces smaller standard errors in all 9 cases and with 

all specifications of total-expenditure. The percentage of violations of the Slutsky matrix’s negative 

semi-definiteness does not appear to be a factor in the relative performance of the two models. 

However, for high percentages of violations, the AIDS would perform qualitatively poorly (cases 1, 

5, 9). 

 The theoretical properties of the demand function are known only when the regularity 

conditions are satisfied, since the duality theory on which the models’ derivations are based require 

regularity. Hence the violations of negative semi-definiteness can be a source of the relatively poor 

performance of the AIDS model in estimating elasticities.13  

 The differences in the performances between the Rotterdam and the nonlinear AIDS models 

are not the result of the different estimation methods, namely the Iterated SUR (ITSUR) with the 

nonlinear AIDS model and FIML for the Rotterdam model and linearized AIDS model. For 

comparison, we also estimated the nonlinear AIDS with FIML. No significant differences were 

found between nonlinear AIDS with ITSUR and with FIML14. 

                                                 
13Regarding the nature of this problem with other models, see Caves and Christensen (1980), Barnett and Lee (1985), 
and Barnett et al. (1985).  
14The results of that comparison can be obtained from the authors upon request. 
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 Tables 9a-9i contain the results of our estimations of the Linear Approximated AIDS (LA-

AIDS), when different price indices are used to produce the linearization. In the literature, the most 

popular LA-AIDS uses Stone's index, which produced the original AIDS model of Deaton and 

Muellbauer.  We also estimated linear AIDS models using three other price indices:  the Törnqvist 

index and the two price-normalized modified-Stone indexes, motivated by the Paasche and 

Laspeyres indexes. It is immediately evident that the linear approximations yield results very 

different from those obtained from the nonlinear AIDS model in tables 5-8. 

 The results from the four linearized models are very similar quantitatively and qualitatively. 

But the sign problems that the nonlinear AIDS models were displaying sometimes became worse.  

The results in tables 9a-9i show that the linearly approximated AIDS models perform significantly 

differently from the PIGLOG model they are designed to approximate.  

 

9. Conclusion  

 Among the many demand specifications in the literature, the Rotterdam model and the 

Almost Ideal Demand System (AIDS) have particularly long histories, have been highly developed, 

and are often applied in consumer demand systems modeling. Using Monte Carlo techniques, we 

seek to determine which model performs better in terms of its ability to recover  the true elasticities 

of demand. Three findings follow from this paper: 

[1] Both the Rotterdam and the PIGLOG (fully nonlinear AIDS) models perform well, when 

substitution among goods is low. The higher the level of aggregation, the lower the 

elasticity of substitution among aggregates. Therefore when modeling consumer demand 

at the aggregate level, both models may yield correct estimates of the elasticities of 

substitution. 

[2] When the elasticities of substitutions among goods is moderately high, both models 

perform well. 

[3] When substitution among all goods is very high, the nonlinear PIGLOG perform better 

than the Rotterdam. 

[4] The Rotterdam model appears better at recovering the true elasticities, when we 

implement exact aggregation within weakly separable branches of a utility tree.  When 

attempting to build consistent aggregates, the Rotterdam appears to perform better.   

Within weakly separable branches of the utility tree, the nonlinear PIGLOG model may 
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classify substitutes as complements or overestimate the elasticities of substitution among 

goods. 

 

 We derive the formulas for the linearized AIDS model’s elasticities, when the  Törnqvist 

price index or either of two modified Stone indexes are used to linearize the model.  We find that 

these three indices, along with Stone’s widely used price index, do not yield satisfactory results. 

The use of those linearizations exacerbates misclassification of goods as complements and leads to 

estimated elasticities different from those of the full nonlinear PIGLOG model, which the 

linearized AIDS models are designed to approximate.  

 These findings are robust in the sense that they do not change, whether we estimate the 

PIGLOG, AIDS, or Rotterdam models using ITSUR or FIML estimation.
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Appendix A1: 
Selection of the values of the generating model’s utility-function parameters and of the median vector of 

variables,  (prices, quantities and expenditures). 

 

In determining the values of the parameters of the utility function and the median data point at 

which we set the true elasticities, we followed the next 11 steps: 

Step 1: Set the supernumerary quantities 1y  and 2y  and expenditures on 1y  and 2y  at the point of 

estimation.  

Step 2: Select 11b , 12b  , 22b , and δ , the parameters of inner aggregator function Q1, such that   

11b + 12b + 22b =1 and 1/ 2δ <   

Step 3: Compute R’ using equation (41) and 12ξ , the elasticity of substitution between 1y  and 2y , 

from equation 40. 

Step 4: Compute the marginal rate of substitution, c, set it equal to the price ratio, p1/p2, and solve 

for p1 and p2, where c is defined by: 

1

1
1

2

Q
yc Q
y

∂
∂

=
∂
∂

. 

Step 5: Compute the aggregate Q1 and the dual price p* = ( 1p y1 + 2p y2)/Q1. 

Step 6: Set 3y   and select 11a , 12a  , 22a , and ρ , such that 11a + 12a + 22a =1 and 1/ 2ρ < .  Then 

calculate the elasticity of substitution between y1 or y2 and y3 from equation 34. 

Step 7: Compute the marginal rate of substitution, KC, set it equal to the price ratio, p*/p3, solve for 

p3, and compute m~ = 1p y1 + 2p y2 + 3p y3, where KC is defined by: 

1

2

U
QKC U
Q

∂
∂

=
∂
∂

. 

Step 8: Set 1a  2a  and 3a  and compute m, the total expenditure on the x’s. 

Step 9: Compute (38) and (42), the elasticities of substitution among the three x’s. 

Step 10: Compute (39) and (43), the income and price elasticities. 

Step 11: Vary the variables and parameters to create the nine cases. 
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Table 1:  Characteristics of the data sets, using the m2 total-expenditure process. 
 

Case 
Sample 

size Moment x1 x2 x3 p1 p2 p3 m2 
61 Mean 12.50 17.47 12.93 5.87 5.07 3.31 204.19 1 

  61 Std. dev. 1.21 1.25 1.34 0.39 0.31 0.10 11.58 
           

61 Mean 9.23 9.65 23.82 5.12 5.02 3.28 173.26 
  
2 
  61 Std. dev. 1.26 1.23 1.96 0.40 0.34 0.14 9.55 

           
61 Mean 8.83 7.56 34.73 5.37 7.06 7.98 376.83 

  
3 
  61 Std. dev. 1.29 1.11 2.60 0.46 0.51 0.36 19.52 

           
61 Mean 12.31 12.64 20.08 6.44 8.79 6.80 325.28 

  
4 
  61 Std. dev. 1.56 1.36 1.90 0.55 0.64 0.31 17.28 

           
61 Mean 9.79 12.25 16.01 1.95 8.14 12.79 322.16 

  
5 
  61 Std. dev. 1.45 1.62 1.57 0.14 0.61 0.59 21.13 

           
61 Mean 13.84 14.74 16.01 5.47 6.61 7.95 299.12 

  
6 
  61 Std. dev. 1.59 1.44 1.51 0.47 0.48 0.34 15.42 

           
61 Mean 8.28 7.85 23.10 1.14 11.14 8.27 286.82 

  
7 
  61 Std. dev. 1.34 1.17 1.89 0.08 0.86 0.36 17.08 

           
61 Mean 7.63 5.89 22.83 1.40 15.01 9.91 324.10 

  
8 
  61 Std. dev. 1.33 1.21 1.93 0.10 1.16 0.56 24.37 

           
61 Mean 7.41 5.82 16.62 1.49 15.12 16.50 371.92 

  
9 
  61 Std. dev. 1.31 1.20 1.58 0.10 1.16 1.07 30.73 

 
The definition of each of the 9 cases, in terms of the elasticity settings, is provided and repeated in each of the tables below. 
m2 = p1(x1 + τ1)      +  p2(x2 + τ2)     + p3(x3  + τ3) 
m3 = p1(x1 +1.5 τ1) + p2(x2 + 1.5τ2) + p3(x3  + 1.5τ3) 
m4 = p1(x1 +2 τ1)    + p2(x2 + 2τ2)    + p3(x3  + 2τ3) 
m5 = p1(x1 + 2.5τ1) + p2(x2 +2.5τ2)  + p3(x3  +2.5 τ3) 
where the τi (i = 1, 2, 3) are the disturbances used in producing the x1, x2, and x3 processes, respectively. They are independently 
normally distributed with mean zero and variance 1. 
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Table 2:  Characteristics of the data sets, using the m3 total-expenditure process. 
 

Case 
Sample 

size Moment x1 x2 x3 p1 p2 p3 m3 
61 Mean 12.36 16.56 12.56 6.08 5.37 3.39 205.70 1 

  61 Std. dev. 2.05 1.76 1.75 0.47 0.37 0.15 14.22 
           

61 Mean 9.28 9.72 23.80 5.12 5.02 3.28 173.88 
  
2 
  61 Std. dev. 1.65 1.63 2.23 0.40 0.34 0.14 12.64 

           
61 Mean 8.87 7.63 34.71 5.37 7.06 7.98 377.50 

  
3 
  61 Std. dev. 1.70 1.54 2.77 0.46 0.51 0.36 23.15 

           
61 Mean 12.36 12.72 20.05 6.44 8.79 6.80 326.01 

  
4 
  61 Std. dev. 1.95 1.77 2.18 0.55 0.64 0.31 21.58 

           
61 Mean 9.83 12.33 15.98 1.95 8.14 12.79 322.41 

  
5 
  61 Std. dev. 1.87 2.04 1.90 0.14 0.61 0.59 26.48 

           
61 Mean 13.88 14.81 15.98 5.47 6.61 7.95 299.69 

  
6 
  61 Std. dev. 1.94 1.83 1.82 0.47 0.48 0.34 19.69 

           
61 Mean 8.33 7.92 23.07 1.14 11.14 8.27 287.50 

  
7 
  61 Std. dev. 1.77 1.60 2.16 0.08 0.86 0.36 22.79 

           
61 Mean 7.68 5.96 22.80 1.40 15.01 9.91 324.86 

  
8 
  61 Std. dev. 1.78 1.68 2.21 0.10 1.16 0.56 31.18 

           
61 Mean 7.46 5.89 16.59 1.49 15.12 16.50 372.53 

  
9 
  61 Std. dev. 1.77 1.67 1.91 0.10 1.16 1.07 38.48 

The definition of each of the 9 cases, in terms of the elasticity settings, is provided and repeated in each of the tables below. 
m2 = p1(x1 + τ1)      +  p2(x2 + τ2)     + p3(x3  + τ3) 
m3 = p1(x1 +1.5 τ1) + p2(x2 + 1.5τ2) + p3(x3  + 1.5τ3) 
m4 = p1(x1 +2 τ1)    + p2(x2 + 2τ2)    + p3(x3  + 2τ3) 
m5 = p1(x1 + 2.5τ1) + p2(x2 +2.5τ2)  + p3(x3  +2.5 τ3) 
where the τi (i = 1, 2, 3) are the disturbances used in producing the x1, x2, and x3 processes, respectively. They are independently 
normally distributed with mean zero and variance 1. 
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Table 3:  Characteristics of the data sets, using the m4 total-expenditure process. 
 

Case 
Sample 

size Moment x1 x2 x3 p1 p2 p3 m4 
61 Mean 12.40 16.63 12.54 6.08 5.37 3.39 206.27 1 

  61 Std. dev. 2.52 2.16 2.15 0.47 0.37 0.15 18.17 
           

61 Mean 9.32 9.79 23.77 5.12 5.02 3.28 174.49 
  
2 
  61 Std. dev. 2.11 2.07 2.56 0.40 0.34 0.14 16.13 

           
61 Mean 8.92 7.70 34.68 5.37 7.06 7.98 378.18 

  
3 
  61 Std. dev. 2.17 2.01 3.01 0.46 0.51 0.36 27.58 

           
61 Mean 12.40 12.79 20.03 6.44 8.79 6.80 326.75 

  
4 
  61 Std. dev. 2.42 2.22 2.52 0.55 0.64 0.31 26.63 

           
61 Mean 9.88 12.40 15.95 1.95 8.14 12.79 322.66 

  
5 
  61 Std. dev. 2.34 2.50 2.27 0.14 0.61 0.59 32.59 

           
61 Mean 13.93 14.88 15.95 5.47 6.61 7.95 300.26 

  
6 
  61 Std. dev. 2.37 2.26 2.18 0.47 0.48 0.34 24.57 

           
61 Mean 8.37 7.99 23.05 1.14 11.14 8.27 288.18 

  
7 
  61 Std. dev. 2.26 2.06 2.49 0.08 0.86 0.36 29.05 

           
61 Mean 7.72 6.03 22.78 1.40 15.01 9.91 325.62 

  
8 
  61 Std. dev. 2.27 2.16 2.55 0.10 1.16 0.56 38.94 

           
61 Mean 7.51 5.96 16.56 1.49 15.12 16.50 373.13 

  
9 
  61 Std. dev. 2.27 2.15 2.29 0.10 1.16 1.07 47.49 

The definition of each of the 9 cases, in terms of the elasticity settings, is provided and repeated in each of the tables below. 
m2 = p1(x1 + τ1)      +  p2(x2 + τ2)     + p3(x3  + τ3) 
m3 = p1(x1 +1.5 τ1) + p2(x2 + 1.5τ2) + p3(x3  + 1.5τ3) 
m4 = p1(x1 +2 τ1)    + p2(x2 + 2τ2)    + p3(x3  + 2τ3) 
m5 = p1(x1 + 2.5τ1) + p2(x2 +2.5τ2)  + p3(x3  +2.5 τ3) 
where the τi (i = 1, 2, 3) are the disturbances used in producing the x1, x2, and x3 processes, respectively. They are independently 
normally distributed with mean zero and variance 1. 
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Table 4:  Characteristics of the data sets, using the m5 total-expenditure process. 
 

Case 
Sample 

size Moment x1 x2 x3 p1 p2 p3 m5 
61 Mean 12.45 16.70 12.51 6.08 5.37 3.39 206.84 1 

  61 Std. dev. 3.02 2.60 2.58 0.47 0.37 0.15 22.31 
           

61 Mean 9.37 9.86 23.75 5.12 5.02 3.28 175.10 
  
2 
  61 Std. dev. 2.61 2.54 2.93 0.40 0.34 0.14 19.80 

           
61 Mean 8.96 7.77 34.66 5.37 7.06 7.98 378.85 

  
3 
  61 Std. dev. 2.68 2.48 3.30 0.46 0.51 0.36 32.47 

           
61 Mean 12.45 12.86 20.00 6.44 8.79 6.80 327.48 

  
4 
  61 Std. dev. 2.91 2.68 2.90 0.55 0.64 0.31 32.06 

           
61 Mean 9.92 12.47 15.93 1.95 8.14 12.79 322.91 

  
5 
  61 Std. dev. 2.85 2.97 2.68 0.14 0.61 0.59 39.11 

           
61 Mean 13.97 14.95 15.93 5.47 6.61 7.95 300.84 

  
6 
  61 Std. dev. 2.85 2.71 2.59 0.47 0.48 0.34 29.74 

           
61 Mean 8.42 8.06 23.02 1.14 11.14 8.27 288.86 

  
7 
  61 Std. dev. 2.77 2.54 2.86 0.08 0.86 0.36 35.57 

           
61 Mean 7.77 6.11 22.75 1.40 15.01 9.91 326.38 

  
8 
  61 Std. dev. 2.80 2.65 2.93 0.10 1.16 0.56 47.19 

           
61 Mean 7.55 6.04 16.54 1.49 15.12 16.50 373.73 

  
9 
  61 Std. dev. 2.79 2.64 2.70 0.10 1.16 1.07 57.17 

The definition of each of the 9 cases, in terms of the elasticity settings, is provided and repeated in each of the tables below. 
m2 = p1(x1 + τ1)      +  p2(x2 + τ2)     + p3(x3  + τ3) 
m3 = p1(x1 +1.5 τ1) + p2(x2 + 1.5τ2) + p3(x3  + 1.5τ3) 
m4 = p1(x1 +2 τ1)    + p2(x2 + 2τ2)    + p3(x3  + 2τ3) 
m5 = p1(x1 + 2.5τ1) + p2(x2 +2.5τ2)  + p3(x3  +2.5 τ3) 
where the τi (i = 1, 2, 3) are the disturbances used in producing the x1, x2, and x3 processes, respectively. They are independently 
normally distributed with mean zero and variance 1. 
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Table 5:  True and estimated elasticities using the m2 total-expenditure process 
 

Elasticities of substitution Income elasticities 
True values Estimated values True values Estimated values 

 
Models 

12σ
  

13σ  23σ
 

12σ�  13σ�  23σ�  1η  2η  3η  1η�  2η�  3η�  

 
Regulation 
condition 

Case 1:                     
     Rotterdam 

2.31 
(0.02) 

0.74 
(0.04) 

.97 
(0.03) 

1.30 
(0.01) 

0.86 
(0.01) 

0.77 
(0.01) 

0.90 

                    
     AIDS 

 
 

1.22 

 
 

.85 

 
 

.85 2.25 
(.02) 

.99 
(.01) 

1.00 
(.01) 

 
 

.87 

 
 

.88 

 
 

1.46 1.21 
(.00) 

.86 
(.00) 

.91 
(.01) 

0.29 

Case 2:                   
     Rotterdam 

3.63 
(0.05) 

0.38 
(0.03) 

1.12 
(0.02) 

1.66 
(0.01) 

1.29 
(0.01) 

0.44 
(0.00) 

0.93 

                    
     AIDS 

 
 

2.98 

 
 

.67 

 
 

.68 3.12 
(.03) 

.21 
(.02) 

1.46 
(.01) 

 
 

1.25 

 
 

1.27 

 
 

.68 1.49 
(.01) 

1.19 
(.01) 

.60 
(.00) 

0.96 

Case 3:                     
     Rotterdam 

2.37 
(0.14) 

1.05 
(0.04) 

1.80 
(0.05) 

1.39 
(0.01) 

2.53 
(0.02) 

0.67 
(0.00) 

0.80 

                    
     AIDS 

 
 

1.82 

 
 

1.29 

 
 

1.27 1.47 
(.06) 

1.24 
(.02) 

2.28 
(.02) 

 
 

1.33 

 
 

1.30 

 
 

.89 1.26 
(.01) 

2.01 
(.01) 

.78 
(.00) 

0.81 

Case 4:                    
     Rotterdam 

1.40 
(0.03) 

.87 
(0.04) 

1.14 
(0.03) 

.96 
(0.01) 

1.29 
(0.01) 

0.79 
(0.00) 

0.81 

                    
     AIDS 

 
 

.52 

 
 

1.20 

 
 

.91 1.16 
(.01) 

1.13 
(.02) 

1.58 
(.01) 

 
 

.82 

 
 

.62 

 
 

1.40 .94 
(.01) 

1.17 
(.00) 

.89 
(.00) 

0.95 

Case 5:                    
     Rotterdam 

2.10 
(0.13) 

2.72 
(0.08) 

1.79 
(0.04) 

.41 
(0.01) 

.93 
(0.01) 

1.09 
(0.00) 

0.87 

                    
     AIDS 

 
 

1.90 

 
 

1.33 

 
 

1.28 4.38 
(.03) 

1.66 
(.03) 

1.49 
(.01) 

 
 

1.04 

 
 

1.00 

 
 

1.00 .50 
(.01) 

.95 
(.01) 

1.07 
(.00) 

0.01 

Case  6:                    
     Rotterdam 

1.33 
(0.02) 

.97 
(0.03) 

.97 
(0.02) 

1.01 
(0.01) 

0.88 
(0.01) 

1.09 
(0.01) 

0.91 

                              
     AIDS 

 
 

.67 

 
 

.76 

 
 

.68 1.27 
(.01) 

1.00 
(.02) 

.99 
(.01) 

 
 

.89 

 
 

.80 

 
 

1.21 .99 
(.01) 

.88 
(.00) 

1.10 
(.00) 

0.55 

Case 7:                
     Rotterdam 

5.43 
(0.07) 

0.97 
(0.03) 

1.04 
(0.01) 

0.38 
(0.01) 

1.93 
(0.01) 

.60 
(0.00) 

0.99 

                    
     AIDS 

 
 

3.20 

 
 

.76 

 
 

.76 5.35 
(.05) 

1.03 
(.02) 

.99 
(.01) 

 
 

1.44 

 
 

1.44 

 
 

.78 .54 
(.01) 

1.73 
(.01) 

.69 
(.00) 

0.88 

Case 8:                    
     Rotterdam 

-.59 
(0.05) 

3.61 
(0.15) 

1.63 
(0.09) 

0.30 
(0.01) 

2.38 
(0.01 

0.51 
(0.00) 

0.62 

                    
     AIDS 

 
 

3.22 

 
 

2.22 

 
 

2.17 3.06 
(.07) 

2.40 
(.05) 

3.53 
(.02) 

 
 

1.45 

 
 

1.41 

 
 

.82 .40 
(.01) 

2.16 
(.01) 

.58 
(.00) 

0.39 

Case 9:                    
     Rotterdam 

-9.42 
(0.76) 

7.64 
(0.27) 

4.60 
(0.23) 

0.27 
(0.01) 

1.84 
(0.01) 

0.77 
(0.00) 

0.64 

                   
     AIDS 

 
 

4.13 

 
 

4.65 

 
 

4.54 -.64 
(.16) 

4.88 
(.08) 

6.43 
(.04) 

 
 

1.45 

 
 

1.41 

 
 

.82 .38 
(.01) 

1.70 
(.01) 

.81 
(.00) 

0.01 

Note:  The regularity condition is the percent of non-violations of negative semi-definiteness of the Slutsky matrix.  Numbers in 
parentheses are standard errors.  AIDS is the fully nonlinear PIGLOG model estimated by iterated SUR. 
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Table 6:  True and estimated elasticities using the m3 total-expenditure process 
 

Elasticities of substitution Income elasticities 
True values Estimated values True values Estimated values 

 
Models 

12σ
  

13σ  23σ
 

12σ�  13σ�  23σ�  1η  2η  3η  1η�  2η�  3η�  

 
Regulation 
condition 

Case 1:                     
     Rotterdam 

2.25 
(0.03) 

0.44 
(0.06) 

1.16 
(0.04) 

1.36 
(0.01) 

0.82 
(0.01) 

0.77 
(0.01) 

0.73 

                    
     AIDS 

 
 

1.22 

 
 

.85 

 
 

.85 1.90 
(.02) 

.32 
(.03) 

1.40 
(.02) 

 
 

.87 

 
 

.88 

 
 

1.46 1.31 
(.01) 

.81 
(.00) 

.83 
(.01) 

0.23 

Case 2:                   
     Rotterdam 

3.67 
(0.07) 

0.33 
(0.04) 

1.13 
(0.03) 

1.72 
(0.01) 

1.31 
(0.01) 

0.39 
(0.00) 

0.78 

                    
     AIDS 

 
 

2.98 

 
 

.67 

 
 

.68 3.08 
(.05) 

-.16 
(.03) 

1.58 
(.02) 

 
 

1.25 

 
 

1.27 

 
 

.68 1.62 
(.01) 

1.25 
(.01) 

.49 
(.00) 

0.80 

Case 3:                     
     Rotterdam 

2.63 
(0.21) 

.96 
(0.06) 

1.86 
(0.07) 

1.44 
(0.01) 

2.83 
(0.02) 

0.60 
(0.00) 

0.64 

                    
     AIDS 

 
 

1.82 

 
 

1.29 

 
 

1.27 1.46 
(.09) 

1.13 
(.03) 

2.64 
(.02) 

 
 

1.33 

 
 

1.30 

 
 

.89 1.35 
(.01) 

2.40 
(.01) 

.69 
(.00) 

0.86 

Case 4:                    
     Rotterdam 

1.49 
(0.05) 

.75 
(0.06) 

1.09 
(0.05) 

.96 
(0.01) 

1.38 
(0.01) 

0.73 
(0.01) 

0.67 

                    
     AIDS 

 
 

.52 

 
 

1.20 

 
 

.91 1.22 
(.02) 

1.02 
(.03) 

1.68 
(.01) 

 
 

.82 

 
 

.62 

 
 

1.40 .95 
(.01) 

1.29 
(.01) 

.80 
(.00) 

0.97 

Case 5:                    
     Rotterdam 

1.93 
(0.19) 

2.90 
(0.12) 

1.81 
(0.07) 

.34 
(0.01) 

.94 
(0.01) 

1.09 
(0.00) 

0.70 

                    
     AIDS 

 
 

1.90 

 
 

1.33 

 
 

1.28 4.63 
(.05) 

1.67 
(.04) 

1.49 
(.01) 

 
 

1.04 

 
 

1.00 

 
 

1.00 .37 
(.01) 

.95 
(.01) 

1.08 
(.00) 

0.05 

Case  6:                    
     Rotterdam 

1.33 
(0.04) 

.96 
(0.04) 

.98 
(0.03) 

1.01 
(0.01) 

0.88 
(0.01) 

1.08 
(0.01) 

0.77 

                              
     AIDS 

 
 

.67 

 
 

.76 

 
 

.68 1.27 
(.02) 

1.00 
(.02) 

1.00 
(.01) 

 
 

.89 

 
 

.80 

 
 

1.21 1.00 
(.01) 

.88 
(.00) 

1.09 
(.00) 

0.58 

Case 7:                
     Rotterdam 

5.50 
(0.11) 

0.97 
(0.05) 

1.05 
(0.02) 

0.31 
(0.01) 

2.02 
(0.01) 

.57 
(0.00) 

0.91 

                    
     AIDS 

 
 

3.20 

 
 

.76 

 
 

.76 5.30 
(.07) 

1.13 
(.03) 

.88 
(.01) 

 
 

1.44 

 
 

1.44 

 
 

.78 .41 
(.01) 

1.90 
(.01) 

.62 
(.00) 

0.89 

Case 8:                    
     Rotterdam 

-.94 
(0.50) 

3.79 
(0.23) 

1.53 
(0.14) 

0.22 
(0.01) 

2.52 
(0.01 

0.46 
(0.00) 

0.50 

                    
     AIDS 

 
 

3.22 

 
 

2.22 

 
 

2.17 3.29 
(.10) 

2.39 
(.07) 

3.67 
(.03) 

 
 

1.45 

 
 

1.41 

 
 

.82 .27 
(.01) 

2.39 
(.01) 

.50 
(.00) 

0.63 

Case 9:                    
     Rotterdam 

-10.03 
(0.76) 

7.94 
(0.27) 

4.54 
(0.23) 

0.19 
(0.01) 

1.94 
(0.01) 

0.74 
(0.00) 

0.51 

                   
     AIDS 

 
 

4.13 

 
 

4.65 

 
 

4.54 -.07 
(.24) 

4.82 
(.12) 

6.67 
(.06) 

 
 

1.45 

 
 

1.41 

 
 

.82 .24 
(.01) 

1.84 
(.01) 

.77 
(.00) 

0.03 

Note:  The regularity condition is the percent of non-violations of negative semi-definiteness of the Slutsky matrix.  Numbers in 
parentheses are standard errors.  AIDS is the fully nonlinear PIGLOG model estimated by iterated SUR.
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Table 7:  True and estimated elasticities using the m4 total-expenditure process 
 

Elasticities of substitution Income elasticities 
True values Estimated values True values Estimated values 

 
Models 

12σ
  

13σ  23σ
 

12σ�  13σ�  23σ�  1η  2η  3η  1η�  2η�  3η�  

 
Regulation 
condition 

Case 1:                     
     Rotterdam 

2.27 
(0.04) 

0.42 
(0.08) 

1.17 
(0.05) 

1.38 
(0.01) 

0.81 
(0.01) 

0.75 
(0.01) 

0.62 

                    
     AIDS 

 
 

1.22 

 
 

.85 

 
 

.85 1.89 
(.03) 

.26 
(.04) 

1.44 
(.03) 

 
 

.87 

 
 

.88 

 
 

1.46 1.35 
(.01) 

.81 
(.00) 

.79 
(.01) 

0.20 

Case 2:                   
     Rotterdam 

3.73 
(0.07) 

0.30 
(0.04) 

1.13 
(0.03) 

1.75 
(0.01) 

1.32 
(0.01) 

0.37 
(0.00) 

0.64 

                    
     AIDS 

 
 

2.98 

 
 

.67 

 
 

.68 3.12 
(.06) 

-.38 
(.03) 

1.63 
(.02) 

 
 

1.25 

 
 

1.27 

 
 

.68 1.69 
(.01) 

1.29 
(.01) 

.43 
(.00) 

0.68 

Case 3:                     
     Rotterdam 

2.82 
(0.28) 

.92 
(0.09) 

1.89 
(0.09) 

1.46 
(0.02) 

3.03 
(0.02) 

0.57 
(0.00) 

0.53 

                    
     AIDS 

 
 

1.82 

 
 

1.29 

 
 

1.27 1.46 
(.11) 

1.07 
(.04) 

2.86 
(.03) 

 
 

1.33 

 
 

1.30 

 
 

.89 1.41 
(.01) 

2.62 
(.02) 

.64 
(.00) 

0.79 

Case 4:                    
     Rotterdam 

1.54 
(0.06) 

.69 
(0.08) 

1.06 
(0.07) 

.96 
(0.01) 

1.41 
(0.01) 

0.70 
(0.01) 

0.59 

                    
     AIDS 

 
 

.52 

 
 

1.20 

 
 

.91 1.26 
(.02) 

.96 
(.03) 

1.74 
(.02) 

 
 

.82 

 
 

.62 

 
 

1.40 .95 
(.01) 

1.36 
(.01) 

.75 
(.00) 

0.93 

Case 5:                    
     Rotterdam 

1.87 
(0.26) 

3.01 
(0.17) 

1.82 
(0.09) 

.30 
(0.01) 

.94 
(0.01) 

1.09 
(0.00) 

0.59 

                    
     AIDS 

 
 

1.90 

 
 

1.33 

 
 

1.28 4.77 
(.07) 

1.69 
(.05) 

1.49 
(.02) 

 
 

1.04 

 
 

1.00 

 
 

1.00 .30 
(.01) 

.95 
(.01) 

1.09 
(.00) 

0.09 

Case  6:                    
     Rotterdam 

1.33 
(0.05) 

.95 
(0.06) 

.98 
(0.04) 

1.02 
(0.01) 

0.88 
(0.01) 

1.08 
(0.01) 

0.64 

                              
     AIDS 

 
 

.67 

 
 

.76 

 
 

.68 1.27 
(.02) 

1.00 
(.03) 

1.01 
(.02) 

 
 

.89 

 
 

.80 

 
 

1.21 1.01 
(.01) 

.88 
(.01) 

1.09 
(.00) 

0.56 

Case 7:                
     Rotterdam 

5.58 
(0.15) 

0.97 
(0.06) 

1.07 
(0.03) 

0.28 
(0.01) 

2.06 
(0.01) 

.55 
(0.00) 

0.81 

                    
     AIDS 

 
 

3.20 

 
 

.76 

 
 

.76 5.24 
(.09) 

1.19 
(.04) 

.80 
(.01) 

 
 

1.44 

 
 

1.44 

 
 

.78 .35 
(.01) 

1.99 
(.01) 

.58 
(.00) 

0.85 

Case 8:                    
     Rotterdam 

-1.38 
(0.68) 

4.02 
(0.32) 

1.50 
(0.19) 

0.18 
(0.01) 

2.59 
(0.01 

0.43 
(0.00) 

0.50 

                    
     AIDS 

 
 

3.22 

 
 

2.22 

 
 

2.17 3.39 
(.13) 

2.40 
(.09) 

3.73 
(.03) 

 
 

1.45 

 
 

1.41 

 
 

.82 .20 
(.01) 

2.50 
(.01) 

.46 
(.00) 

0.68 

Case 9:                    
     Rotterdam 

-10.26 
(1.58) 

8.14 
(0.57) 

4.39 
(0.48) 

0.16 
(0.01) 

2.01 
(0.01) 

0.72 
(0.00) 

0.43 

                   
     AIDS 

 
 

4.13 

 
 

4.65 

 
 

4.54 .18 
(.32) 

4.83 
(.16) 

6.82 
(.08) 

 
 

1.45 

 
 

1.41 

 
 

.82 .17 
(.01) 

1.91 
(.01) 

.75 
(.00) 

0.06 

Note:  The regularity condition is the percent of non-violations of negative semi-definiteness of the Slutsky matrix.  Numbers in 
parentheses are standard errors.  AIDS is the fully nonlinear PIGLOG model estimated by iterated SUR. 
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Table 8:  True and estimated elasticities using the m5 total-expenditure process 
 

Elasticities of substitution Income elasticities 
True values Estimated values True values Estimated values 

 
Models 

12σ
  

13σ  23σ
 

12σ�  13σ�  23σ�  1η  2η  3η  1η�  2η�  3η�  

 
Regulation 
condition 

Case 1:                     
     Rotterdam 

2.30 
(0.05) 

0.42 
(0.10) 

1.18 
(0.06) 

1.39 
(0.01) 

0.81 
(0.01) 

0.74 
(0.01) 

0.53 

                    
     AIDS 

 
 

1.22 

 
 

.85 

 
 

.85 1.89 
(.03) 

.23 
(.05) 

1.47 
(.03) 

 
 

.87 

 
 

.88 

 
 

1.46 1.37 
(.01) 

.80 
(.00) 

.76 
(.01) 

0.19 

Case 2:                   
     Rotterdam 

3.80 
(0.12) 

0.28 
(0.06) 

1.14 
(0.05) 

1.78 
(0.01) 

1.32 
(0.01) 

0.35 
(0.00) 

0.64 

                    
     AIDS 

 
 

2.98 

 
 

.67 

 
 

.68 3.19 
(.08) 

-.53 
(.04) 

1.65 
(.03) 

 
 

1.25 

 
 

1.27 

 
 

.68 1.73 
(.01) 

1.31 
(.01) 

.39 
(.00) 

0.59 

Case 3:                     
     Rotterdam 

2.94 
(0.37) 

.90 
(0.11) 

1.93 
(0.12) 

1.48 
(0.02) 

3.15 
(0.02) 

0.54 
(0.00) 

0.46 

                    
     AIDS 

 
 

1.82 

 
 

1.29 

 
 

1.27 1.46 
(.13) 

1.04 
(.05) 

3.00 
(.03) 

 
 

1.33 

 
 

1.30 

 
 

.89 1.45 
(.01) 

2.76 
(.02) 

.61 
(.00) 

0.72 

Case 4:                    
     Rotterdam 

1.59 
(0.08) 

.65 
(0.10) 

1.03 
(0.09) 

.96 
(0.01) 

1.44 
(0.01) 

0.68 
(0.01) 

0.51 

                    
     AIDS 

 
 

.52 

 
 

1.20 

 
 

.91 1.29 
(.03) 

.93 
(.04) 

1.78 
(.02) 

 
 

.82 

 
 

.62 

 
 

1.40 .95 
(.01) 

1.40 
(.01) 

.71 
(.00) 

0.87 

Case 5:                    
     Rotterdam 

1.87 
(0.33) 

3.11 
(0.21) 

1.83 
(0.11) 

.29 
(0.01) 

.95 
(0.01) 

1.09 
(0.00) 

0.51 

                    
     AIDS 

 
 

1.90 

 
 

1.33 

 
 

1.28 4.86 
(.08) 

1.71 
(.07) 

1.50 
(.02) 

 
 

1.04 

 
 

1.00 

 
 

1.00 .26 
(.01) 

.95 
(.01) 

1.09 
(.00) 

0.12 

Case  6:                    
     Rotterdam 

1.34 
(0.06) 

.95 
(0.07) 

.98 
(0.05) 

1.03 
(0.01) 

0.88 
(0.01) 

1.08 
(0.01) 

0.54 

                              
     AIDS 

 
 

.67 

 
 

.76 

 
 

.68 1.28 
(.03) 

1.01 
(.04) 

1.02 
(.02) 

 
 

.89 

 
 

.80 

 
 

1.21 1.01 
(.01) 

.88 
(.01) 

1.09 
(.00) 

0.51 

Case 7:                
     Rotterdam 

5.67 
(0.20) 

0.94 
(0.09) 

1.08 
(0.03) 

0.26 
(0.02) 

2.09 
(0.01) 

.54 
(0.00) 

0.69 

                    
     AIDS 

 
 

3.20 

 
 

.76 

 
 

.76 5.18 
(.12) 

1.24 
(.05) 

.74 
(.02) 

 
 

1.44 

 
 

1.44 

 
 

.78 .31 
(.01) 

2.04 
(.01) 

.56 
(.00) 

0.79 

Case 8:                    
     Rotterdam 

-1.72 
(0.88) 

4.15 
(0.41) 

1.53 
(0.24) 

0.16 
(0.01) 

2.62 
(0.01 

0.42 
(0.00) 

0.34 

                    
     AIDS 

 
 

3.22 

 
 

2.22 

 
 

2.17 3.45 
(.16) 

2.41 
(.12) 

3.79 
(.04) 

 
 

1.45 

 
 

1.41 

 
 

.82 .16 
(.01) 

2.58 
(.01) 

.43 
(.00) 

0.67 

Case 9:                    
     Rotterdam 

-9.65 
(2.05) 

7.98 
(0.73) 

4.09 
(0.61) 

0.13 
(0.01) 

2.05 
(0.01) 

0.71 
(0.00) 

0.36 

                   
     AIDS 

 
 

4.13 

 
 

4.65 

 
 

4.54 .31 
(.41) 

4.86 
(.21) 

6.95 
(.10) 

 
 

1.45 

 
 

1.41 

 
 

.82 .12 
(.01) 

1.96 
(.01) 

.74 
(.00) 

0.07 

Note:  The regularity condition is the percent of non-violations of negative semi-definiteness of the Slutsky matrix.  Numbers in 
parentheses are standard errors.  AIDS is the fully nonlinear PIGLOG model estimated by iterated SUR. 
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Table 9a:  Case 1 FIML estimation of  LA-AIDS using four price indices 
 

Elasticities of substitution Income elasticities 
True values Estimated values True values Estimated values  

Price Index 
 

12σ  13σ  23σ  12σ�  13σ�  23σ�  1η  2η  3η  1η�  2η�  3η�  

Quasi-Törnqvist 3.94 
(0.02) 

-.51 
(0.02) 

-.37 
(0.02) 

1.10 
(0.00) 

0.83 
(0.00) 

1.16 
(0.00) 

Quasi-Paasche 3.92 
(0.02) 

-.52 
(0.02) 

-.36 
(0.02) 

1.06 
(0.00) 

0.86 
(0.00) 

1.16 
(0.00) 

Quasi-Laspeyres 3.95 
(0.02) 

-.54 
(0.02) 

-.34 
(0.02) 

1.14 
(0.00) 

0.80 
(0.00) 

1.16 
(0.00) 

Stone 

 
 
 

1.22 

 
 
 

.85 

 
 
 

.85 

3.87 
(0.02) 

-.72 
(0.03) 

-.37 
(0.02) 

 
 
 

.87 

 
 
 

.88 

 
 
 

1.46 

1.04 
(0.00) 

0.82 
(0.00) 

1.28 
(0.00) 

Note:  Standard errors are in parentheses.  Replications = 1,000. 
 
Table 9b:  Case 2 FIML estimation of  LA-AIDS using four price indices 

Elasticities of substitution Income elasticities 
True values Estimated values True values Estimated values Price Index 

 12σ  13σ  23σ  12σ�  13σ�  23σ�  1η  2η  3η  1η�  2η�  3η�  

Quasi-Törnqvist 5.50 
(.04) 

-.57 
(0.02) 

.97 
(0.02) 

0.81 
(0.01) 

0.91 
(0.01) 

1.17 
(0.00) 

Quasi-Paasche 5.55 
(.04) 

-.64 
(0.02) 

1.03 
(0.02) 

.76 
(0.01) 

0.95 
(0.01) 

1.17 
(0.00) 

Quasi-Laspeyres 5.43 
(.04) 

-.51 
(0.02) 

0.91 
(0.01) 

.86 
(0.01) 

0.86 
(0.01) 

1.17 
(0.00) 

Stone 

 
 
 

2.98 

 
 
 

.67 

 
 
 

.68 

5.57 
(.04) 

-.69 
(0.02) 

0.68 
(0.02) 

 
 
 
 

1.25 

 
 
 
 

1.27 

 
 
 
 

.68 

.70 
(0.01) 

0.82 
(0.01) 

1.29 
(0.00) 

Note:  Standard errors are in parentheses.  Replications = 1,000. 
 
Table 9c:  Case 3 FIML estimation of  LA-AIDS using four price indices 

Elasticities of substitution Income elasticities 
True values Estimated values True values Estimated values Price Index 

12σ  13σ  23σ  12σ�  13σ�  23σ�  1η  2η  3η  1η�  2η�  3η�  

Quasi-Törnqvist 9.70 
(.06) 

-.79 
(0.01) 

.05 
(0.01) 

0.57 
(0.01) 

0.9 
(0.01) 

1.09 
(0.00) 

Quasi-Paasche 9.55 
(.06) 

-.73 
(0.01) 

-.01 
(0.01) 

0.62 
(0.01) 

0.86 
(0.01) 

1.09 
(0.00) 

Quasi-Laspeyres 9.84 
(.06) 

-.86 
(0.01) 

.11 
(0.01) 

0.52 
(0.01) 

0.95 
(0.01) 

1.09 
(0.00) 

Stone 

 
 
 

1.82 

 
 
 

1.29 

 
 
 

1.27 

8.80 
(.06) 

-.43 
(0.01) 

-.59 
(0.01) 

 
 
 

1.33 

 
 
 

1.3 

 
 
 

.89 

0.64 
(0.01) 

0.45 
(0.01) 

1.16 
(0.00) 

Note:  Standard errors are in parentheses.  Replications = 1,000. 



 x

Table 9d:  Case 4 FIML estimation of  LA-AIDS using four price indices 
Elasticities of substitution Income elasticities 

True values Estimated values True values Estimated values Price Index 
12σ  13σ  23σ  12σ�  13σ�  23σ�  1η  2η  3η  1η�  2η�  3η�  

Quasi-Törnqvist 3.23 
(0.01) 

-.88 
(0.01) 

1.15 
(0.01) 

0.84 
(0.01) 

1.01 
(0.00) 

1.08 
(0.00) 

Quasi-Paasche 3.32 
(0.01) 

-.84 
(0.01) 

1.13 
(0.01) 

0.88 
(0.01) 

.99 
(0.00) 

1.08 
(0.00) 

Quasi-Laspeyres 3.33 
(0.01) 

-.91 
(0.01) 

1.27 
(0.01) 

0.81 
(0.01) 

1.03 
(0.00) 

1.08 
(0.00) 

Stone 

 
 
 
 

.52 

 
 
 
 

1.20 

 
 
 
 

.91 

3.26 
(0.01) 

-.71 
(0.01) 

0.95 
(0.01) 

 
 
 
 

.82 

 
 
 
 

.62 

 
 
 
 

1.4 

0.93 
(0.01) 

.87 
(0.00) 

1.14 
(0.00) 

Note:  Standard errors are in parentheses.  Replications = 1,000. 
 
Table 9e:  Case 5 FIML estimation of  LA-AIDS using four price indices 

Elasticities of substitution Income elasticities 
True values Estimated values True values Estimated values 

 
Price Index 

12σ  13σ  23σ  12σ�  13σ�  23σ�  1η  2η  3η  1η�  2η�  3η�  

Quasi-Törnqvist 7.37 
(.04) 

-0.26 
(.03) 

0.28 
(0.01) 

0.50 
(0.01) 

1.01 
(0.00) 

1.04 
(0.00) 

Quasi-Paasche 7.53 
(.04) 

-0.43 
(.03) 

0.32 
(0.01) 

0.47 
(0.01) 

1.02 
(0.00) 

1.04 
(0.00) 

Quasi-Laspeyres 7.21 
(.04) 

-0.10 
(.03) 

0.25 
(0.01) 

0.52 
(0.01) 

1.00 
(0.00) 

1.04 
(0.00) 

Stone 

 
 
 

1.9 

 
 
 

1.33 

 
 
 

1.28 

6.99 
(.04) 

0.07 
(.03) 

0.22 
(0.01) 

 
 
 

1.04 

 
 
 

1.00 

 
 
 

1.00 

0.73 
(0.01) 

.90 
(0.00) 

1.07 
(0.00) 

Note:  Standard errors are in parentheses.  Replications = 1,000. 
 
Table 9f:  Case 6 FIML estimation of  LA-AIDS using four price indices 

Elasticities of substitution Income elasticities 
True values Estimated values True values Estimated values 

 
Price Index 

12σ  13σ  23σ  12σ�  13σ�  23σ�  1η  2η  3η  1η�  2η�  3η�  

Quasi-Törnqvist 3.29 
(0.01) 

-.61 
(0.01) 

1.06 
(0.01) 

1.00 
(0.01) 

0.94 
(0.00) 

1.04 
(0.00) 

Quasi-Paasche 3.33 
(0.01) 

-.66 
(0.01) 

1.11 
(0.01) 

0.94 
(0.10) 

0.99 
(0.00) 

1.04 
(0.00) 

Quasi-Laspeyres 3.28 
(0.01) 

-.56 
(0.01) 

1.03 
(0.01) 

1.06 
(0.00) 

0.90 
(0.00) 

1.04 
(0.00) 

Stone 

 
 
 

.67 

 
 
 

.76 

 
 
 

.68 

3.27 
(0.01) 

-.55 
(0.01) 

1.01 
(0.01) 

 
 
 

.89 

 
 
 

.8 

 
 
 

1.21 

1.04 
(0.01) 

0.88 
(0.00) 

1.07 
(0.00) 

Note:  Standard errors are in parentheses.  Replications = 1,000. 
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Table 9g:  Case 7 FIML estimation of  LA-AIDS using four price indices 

Elasticities of substitution Income elasticities 
True values Estimated values True values Estimated values 

 
Price Index 

12σ  13σ  23σ  12σ�  13σ�  23σ�  1η  2η  3η  1η�  2η�  3η�  

Quasi-Törnqvist 6.66 
(0.06) 

0.58 
(0.02) 

-.13 
(0.00) 

0.37 
(0.01) 

0.78 
(0.00) 

1.13 
(0.00) 

Quasi-Paasche 7.04 
(.06) 

0.28 
(0.02) 

-0.09 
(0.00) 

0.30 
(0.01) 

0.79 
(0.00) 

1.13 
(0.00) 

Quasi-Laspeyres 6.32 
(.06) 

0.85 
(0.02) 

-0.16 
(0.00) 

0.44 
(0.01) 

0.77 
(0.00) 

1.13 
(0.00) 

Stone 

 
 
 

3.2 

 
 
 

.76 

 
 
 

.76 

5.49 
(.06) 

1.7 
(0.02) 

-.62 
(0.00) 

 
 
 

1.44 

 
 
 

1.44 

 
 
 

.78 

0.98 
(0.01) 

0.44 
(0.00) 

1.25 
(0.00) 

Note:  Standard errors are in parentheses.  Replications = 1,000. 
 
Table 9h:  Case 8 FIML estimation of  LA-AIDS using four price indices 

Elasticities of substitution Income elasticities 
True values Estimated values True values Estimated values 

 
Price Index 

12σ  13σ  23σ  12σ�  13σ�  23σ�  1η  2η  3η  1η�  2η�  3η�  

Quasi-Törnqvist 6.49 
(0.10) 

0.29 
(0.06) 

-.27 
(0.01) 

0.29 
(0.01) 

0.74 
(0.00) 

1.14 
(0.00) 

Quasi-Paasche 6.63 
(.10) 

0.19 
(.06) 

-.26 
(0.01) 

0.29 
(0.01) 

0.74 
(0.00) 

1.13 
(0.00) 

Quasi-Laspeyres 6.35 
(.09) 

0.40 
(.06) 

-.29 
(0.01) 

0.30 
(0.01) 

0.73 
(0.00) 

1.14 
(0.00) 

Stone 

 
 
 

3.22 

 
 
 

2.22 

 
 
 

2.17 

4.28 
(.10) 

1.73 
(.06) 

-1.06 
(0.01) 

 
 
 

1.45 

 
 
 

1.41 

 
 
 

.82 

0.92 
(0.01) 

0.24 
(0.01) 

1.30 
(0.00) 

Note:  Standard errors are in parentheses.  Replications = 1,000. 

 
Table 9i:  Case 9 FIML estimation of  LA-AIDS using four price indices 

Elasticities of substitution Income elasticities 
True values Estimated values True values Estimated values 

 
Price Index 

12σ  13σ  23σ  12σ�  13σ�  23σ�  1η  2η  3η  1η�  2η�  3η�  

Quasi-Törnqvist 12.08 
(.20) 

-1.08 
(.10) 

-.19 
(.01) 

0.23 
(0.01) 

0.85 
(0.00) 

1.08 
(0.00) 

Quasi-Paasche 12.59 
(.20) 

-1.3 
(.10) 

-.15 
(.01) 

0.23 
(0.01) 

0.86 
(0.00) 

1.07 
(0.00) 

Quasi-Laspeyres 11.66 
(.20) 

-.85 
(.09) 

-.23 
(.01) 

0.24 
(0.01) 

0.84 
(0.00) 

1.08 
(0.00) 

Stone 

4.13 
 
 
 
 

4.65 
 
 
 
 

4.54 
 
 
 
 

15.43 
(.21) 

-3.15 
(.10) 

.08 
(.01) 

1.46 
 
 
 
 

1.43 
 
 
 
 

0.85 
 
 
 
 

0.49 
(0.01) 

0.75 
(0.01) 

1.10 
(0.00) 

Note:  Standard errors are in parentheses.  Replications = 1,000. 


